Citation: Xiao Zhen, Yue Qiang, Ran Ziyao, Zhang Qian, Li Dong. Copper-Promoted N-Arylation of 8-Acylaminoquinoline Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1193-1198. doi: 10.6023/cjoc201710035 shu

Copper-Promoted N-Arylation of 8-Acylaminoquinoline Compounds

  • Corresponding author: Zhang Qian, zhangqian620@hotmail.com Li Dong, dongli@mail.hbut.edu.cn
  • Received Date: 27 October 2017
    Revised Date: 23 December 2017
    Available Online: 10 May 2018

    Fund Project: the Open Fund of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy HBSKFQN2016003Project supported by the National Natural Science Foundation of China (No. 21702054) and the Open Fund of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy (No. HBSKFQN2016003)the National Natural Science Foundation of China 21702054

Figures(2)

  • A copper-promoted N-arylation of 8-acylaminoquinolines has been developed. The N-arylation of 8-acylaminoquinoline with triaryl bismuth generated the target products in moderate to high yields under 40 mol% Cu(OAc)2, 2.0 equiv. of NaHCO3 in 1, 4-dioxane at 100 ℃ for 12 h. The reaction is compatible with a wide range of quinoline substrates, which provides a new method for synthesis of N-arylamide compounds.
  • 加载中
    1. [1]

      Suwanprasop, S.; Nhujak, T.; Roengsumran, S. Ind. Eng. Chen. Res. 2004, 43, 4973.  doi: 10.1021/ie030739s

    2. [2]

    3. [3]

      (a) Klapars, A. ; Antilla, J. -C. ; Huang, X. -H. ; Buchwald, S. -L. J. Am. Chem. Soc. 2001, 123, 7727.
      (b) Antilla, J. -C. ; Klapars, A. ; Buchwald, S. -L. J. Am. Chem. Soc. 2002, 124, 11684.
      (c) Klapars, A. ; Buchwald, S. -L. J. Am. Chem. Soc. 2002, 124, 14844.
      (d) Shafir, A. ; Buchwald, S. -L. J. Am. Chem. Soc. 2006, 128, 8742.
      (e) Jones, G. -O. ; Liu, P. ; Houk, K. -N. ; Buchwald, S. -L. J. Am. Chem. Soc. 2010, 132, 6205.
      (f) Klapars, A. ; Huang, X. -H. ; Buchwald, S. -L. J. Am. Chem. Soc. 2002, 124, 7421.
      (g) Antilla, J. -C. ; Baskin, J. -M. ; Barder, T. -E. ; Buchwald, S. -L. J. Org. Chem. 2004, 69, 5578.
      (h) Job, G. -E. ; Buchwald, S. -L. Org. Lett. 2002, 4, 3703.
      (i) Jiang, L. ; Job, G. -E. ; Klapars, A. ; Buchwald, S. -L. Org. Lett. 2003, 5, 3667.
      (j) Altman, R. -A. ; Buchwald, S. -L. Org. Lett. 2007, 9, 643.
      (k) Rivero, M. -R. ; Buchwald, S. -L. Org. Lett. 2007, 9, 973.
      (l) Wolter, M. ; Klapars, A. ; Buchwald, S. -L. Org. Lett. 2001, 3, 3807.
      (m) Kwong, F. -Y. ; Klapars, A. ; Buchwald, S. -L. Org. Lett. 2002, 4, 581.
      (n) Kwong, F. -Y. ; Buchwald, S. -L. Org. Lett. 2003, 5, 793.
      (o) Altman, R. -A. ; Buchwald, S. -L. Org. Lett. 2006, 8, 2779.
      (p) Martin, R. -M. ; Larsen, C. -H. ; Cuenca, A. ; Buchwald, S. -L. Org. Lett. 2007, 9, 3379.
      (q) Zheng, N. ; Buchwald, S. -L. Org. Lett. 2007, 9, 4749.

    4. [4]

      Chen, C.; Yang, L.-M. J. Org. Chem. 2007, 72, 6324.  doi: 10.1021/jo0709448

    5. [5]

      (a) Suribabu, J. ; Sekarpandi, S. ; Laxmidhar, R. ; Tathagata, M. ; Santu, M. ; Tharmalingam, P. J. Org. Chem. 2009, 74, 1971.
      (b) Bhosale, M. A. ; Bhanage, B. M. RSC Adv. 2014, 4, 15122.
      (c) Manirul, I. ; Paramita, M. ; Kazi, T. ; Anupam, S. R. ; Sanchita, M. ; Dilder, H. J. Organomet. Chem. 2010, 695, 2284.

    6. [6]

      (a) Ezzat, R. ; Ali, A. ; Mohammad, J. Tetrahedron Lett. 2016, 52, 219.
      (b) Rahul, S. ; Bharat, K. A. ; Dushyant, S. R. ; Krishna, N. S. Tetrahedron 2013, 69, 1038.

    7. [7]

      (a) Sawant, S. D. ; Srinivas, M. ; Aravinda Kumar, K. A. ; Lakshma Reddy, G. ; Singh, P. P. ; Singh, B. ; Sharma, A. K. ; Sharma, P. R. ; Vishwakarma, R. A. Tetrahedron Lett. 2013, 54, 5351.
      (b) Xu, J. ; Li, R. J. Chem. Res. 2012, 36, 381.

    8. [8]

      Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41, 2655.  doi: 10.1016/S0040-4039(00)00238-0

    9. [9]

      Li, J.; Ackermann, L. Chem.-Eur. J. 2015, 21, 5718.  doi: 10.1002/chem.201500552

    10. [10]

      (a) Gui, Q. -W. ; Chen, X. ; Hu, L. ; Wang, D. -L. ; Liu, J. -D. ; Tan, Z. Adv. Synth. Catal. 2016, 358, 509.
      (b) Hu, L. ; Gui, Q. -W. ; Chen, X. ; Tan, Z. ; Zhu, G. -G. Org. Biomol. Chem. 2016, 14, 11070.

    11. [11]

      Tinnis, F.; Stridfeldt, E.; Lundberg, H.; Adolfsson, H.; Olofsson, B. Org. Lett. 2015, 17, 2688.  doi: 10.1021/acs.orglett.5b01079

    12. [12]

      (a) Luan, J. -F. ; Zhang, L. -Y. ; Hu, Z. -T. Molecules 2011, 16, 4191.
      (b) Elliott, G. I. ; Konopelski, J. P. Tetrahedron 2001, 57, 5683.
      (c) Postel, M. ; Dunach, E. Coord. Chem. Rev. 1996, 155, 127.

    13. [13]

      Kawamura, T.; Kikukawa, K.; Takagi, M.; Matsuda, T. Bull. Chem. Soc. Jpn. 1977, 50, 2021.  doi: 10.1246/bcsj.50.2021

    14. [14]

      Balsane, K. E.; Gund, S. H.; Nagarkar, J. M. Catal. Commun. 2017, 89, 29.  doi: 10.1016/j.catcom.2016.10.005

    15. [15]

      Hébert, M.; Petiot, P.; Benoit, E.; Dansereau, J.; Ahmad, T.; Roch, A.-L.; Ottenwaelder, X.; Gagnon, X. J. Org. Chem. 2016, 81, 5401.  doi: 10.1021/acs.joc.6b00767

    16. [16]

      Muriel Hall, D. J. Chem. Soc. 1948, 1603.  doi: 10.1039/jr9480001603

  • 加载中
    1. [1]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    18. [18]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    19. [19]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    20. [20]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

Metrics
  • PDF Downloads(8)
  • Abstract views(942)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return