Citation: Zhu Lili, Zhang Hui, Wang Chunjie, Chen Zili. Recent Progress in the Synthesis of N2-Substituted 1, 2, 3-Triazoles[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1052-1064. doi: 10.6023/cjoc201710018 shu

Recent Progress in the Synthesis of N2-Substituted 1, 2, 3-Triazoles

  • Corresponding author: Zhu Lili, lily77cq@163.com Chen Zili, zilichen@ruc.edu.cn
  • Received Date: 16 December 2017
    Revised Date: 20 December 2017
    Available Online: 10 May 2018

    Fund Project: the Doctoral Scientific Research Foundation of Zhoukou Normal University ZKNUB2013001the Science and Technology Research Program of Henan Province 162300410197Project supported by the National Natural Science Foundation of China (No. 21472237), the Science and Technology Research Program of Henan Province (No. 162300410197), the Scientific Research Innovation Foundation of Zhoukou Normal University (No. ZKNUA201701) and the Doctoral Scientific Research Foundation of Zhoukou Normal University (No. ZKNUB2013001)the Scientific Research Innovation Foundation of Zhoukou Normal University ZKNUA201701the National Natural Science Foundation of China 21472237

Figures(26)

  • N-Substituted 1, 2, 3-triazole is an important structural unit in organic chemistry, and has widely utilized in organic synthesis, medicinal chemistry and material science. The chemistry of N1-substituted 1, 2, 3-triazoles has attracted much attention from organic chemists, while the synthesis and application of their N2-isomers have been far less explored. The recent progress on the research field of N2-alkyl, allyl, propargyl, vinyl, aryl substituted 1, 2, 3-triazoles since year 2000 is summarized, including some research of our group. The content is classified by different synthetic methods, such as selective functionalization of 1, 2, 3-triazoles and oxidative cyclization of bisarylhydrazones or azobenzenes.
  • 加载中
    1. [1]

    2. [2]

      (a) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565.
      (b) Huisgen, R. 1, 3-Dipolar Cycloaddition Chemistry, Ed. : Padwa, A., Wiley, New York, 1984, pp. 1~176.

    3. [3]

      (a) Kolb, H. C. ; Finn, M. G. ; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
      (b) Rostovtsev, V. V. ; Green, L. G. ; Fokin, V. V. ; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
      (c) Zhang, L. ; Chen, X. ; Xue, P. ; Sun, H. H. Y. ; Williams, I. D. ; Sharpless, K. B. ; Fokin, V. V. ; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
      (d) Rasmussen, L. K. ; Boren, B. C. ; Fokin, V. V. Org. Lett. 2007, 9, 5337.

    4. [4]

    5. [5]

    6. [6]

      (a) Mangion, I. K. ; Sherry, B. D. ; Yin, J. ; Fleitz, F. J. Org. Lett. 2012, 14, 3458.
      (b) Adibekian, A. ; Martin, B. R. ; Wang, C. ; Hsu, K. -L. ; Bachovchin, D. A. ; Niessen, S. ; Hoover, H. ; Cravatt, B. F. Nat. Chem. Biol. 2011, 7, 469.
      (c) Cox, C. D. ; Breslin, M. J. ; Whitman, D. B. ; Schreier, J. D. ; McGaughey, G. B. ; Bogusky, M. J. ; Roecker, A. J. ; Mercer, S. P. ; Bednar, R. A. ; Lemaire, W. ; Bruno, J. G. ; Reiss, D. R. ; Harrell, C. M. ; Murphy, K. L. ; Garson, S. L. ; Doran, S. M. ; Prueksaritanont, T. ; Anderson, W. B. ; Tang, C. ; Roller, S. ; Cabalu, T. D. ; Cui, D. ; Hartman, G. D. ; Young, S. D. ; Koblan, K. S. ; Winrow, C. J. ; Renger, J. J. ; Coleman, P. J. J. Med. Chem. 2010, 53, 5320.
      (d) Baxter, C. A. ; Cleator, E. ; Brands, K. M. J. ; Edwards, J. S. ; Reamer, R. A. ; Sheen, F. J. ; Stewart, G. W. ; Strotman, N. A. ; Wallace, D. Org. Process Res. Dev. 2011, 15, 367.

    7. [7]

      Chen, Y.; Liu, Y.; Petersena, J. L.; Shi, X. Chem. Commun. 2008, 3254.

    8. [8]

      Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2008, 10, 3171.  doi: 10.1021/ol8006748

    9. [9]

      Wang, X.-J.; Sidhu, K.; Zhang, L.; Campbell, S.; Haddad, N.; Reeves, D. C.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2009, 11, 5490.  doi: 10.1021/ol902334x

    10. [10]

      Wang, X.-J.; Zhang, L.; Krishnamurthy, D.; Senanayake, C. H.; Wipf, P. Org. Lett. 2010, 12, 4632.  doi: 10.1021/ol101965a

    11. [11]

      Yan, W.; Liao, T.; Tuguldur, O.; Zhong, C.; Petersen, J. L.; Shi, X. Chem.-Asian J. 2011, 6, 2720.  doi: 10.1002/asia.v6.10

    12. [12]

      Girish, Y. R.; Kumar, K. S. S.; Muddegowda, U.; Lokanath, N. K.; Rangappa, K. S.; Shashikanth, S. RSC Adv. 2014, 4, 55800.  doi: 10.1039/C4RA09970B

    13. [13]

      Shi, J.; Zhu, L.; Wen, J.; Chen, Z. Chin. J. Catal. 2016, 37, 1222.  doi: 10.1016/S1872-2067(15)61107-X

    14. [14]

      Jiang, Y.; Wang, Q.; Sun, R.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2016, 3, 744.  doi: 10.1039/C6QO00102E

    15. [15]

      Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938.  doi: 10.1002/anie.201204347

    16. [16]

      Zhu, L.-L.; Xu, X.-Q.; Shi, J.-W.; Chen, B.-L.; Chen, Z. J. Org. Chem. 2016, 81, 3568.  doi: 10.1021/acs.joc.6b00185

    17. [17]

      Wei, H.; Hu, Q.; Ma, Y.; Wei, L.; Liu, J.; Shi, M.; Wang, F. Asian J. Org. Chem. 2017, 6, 662.  doi: 10.1002/ajoc.v6.6

    18. [18]

      Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786.  doi: 10.1021/ja034191s

    19. [19]

      Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2004, 69, 2386.  doi: 10.1021/jo035292b

    20. [20]

      Xu, K.; Thieme, N.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 7268.  doi: 10.1002/anie.201403682

    21. [21]

      Yan, Wu.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308.  doi: 10.1021/ol101082v

    22. [22]

      Duan, H.; Yan, W.; Sengupta, S.; Shi, X. Bioorg. Med. Chem. Lett. 2009, 19, 3899.  doi: 10.1016/j.bmcl.2009.03.096

    23. [23]

      Yan, W.; Ye, X.; Weise, K.; Petersen, J. L.; and Shi, X. Chem. Commun. 2012, 48, 3521.  doi: 10.1039/c2cc17522c

    24. [24]

      Zhang, Z.; Chang, L.; Wang, S.; Wang, H.; Yao, Z.-J. RSC Adv. 2013, 3, 18446.  doi: 10.1039/c3ra43075h

    25. [25]

      Poznański, J.; Najda, A.; Bretner, M.; Shugar, D. J. Phys. Chem. A 2007, 111, 6501.

    26. [26]

      Kitamura, T.; Morshed, M. H.; Tsukada, S.; Miyazaki, Y.; Iguchi, N.; Inoue, D. J. Org. Chem. 2011, 76, 8117.  doi: 10.1021/jo2015467

    27. [27]

      Liu, Y.; Yan, W.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5389.  doi: 10.1021/ol802246q

    28. [28]

      Yan, W.; Wang, Q.; Lin, Q.; Li, M.; Petersen, J. L.; Shi, X. Chem.-Eur. J. 2011, 17, 5011.  doi: 10.1002/chem.v17.18

    29. [29]

      Zhang, Y.; Ye, X.; Petersen, J. L.; Li, M.; Shi, X. J. Org. Chem. 2015, 80, 3664.  doi: 10.1021/acs.joc.5b00006

    30. [30]

      Wang, X.-J.; Zhang, L.; Lee, H.; Haddad, N.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2009, 11, 5026.  doi: 10.1021/ol9019875

    31. [31]

      Li, J.; Zhang, Y.; Wang, D.; Wang, W.; Gao, T.; Wang, L.; Li, J.; Huang, G.; Chen, B. Synlett 2010, 1617.
       

    32. [32]

      Liu, X.; Li, J.; Chen, B. New J. Chem. 2013, 37, 965.  doi: 10.1039/c3nj40912k

    33. [33]

      Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. Org. Lett. 2012, 14, 26.  doi: 10.1021/ol202718d

    34. [34]

      Kamal, A.; Swapna, P. RSC Adv. 2013, 3, 7419.  doi: 10.1039/c3ra22485f

    35. [35]

      Singh, D. P.; Allam, B. K.; Singh, R.; Singh, K. N.; Singh, V. P. RSC Adv. 2016, 6, 15518.  doi: 10.1039/C5RA27907K

    36. [36]

      Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 8944.  doi: 10.1002/anie.v50.38

    37. [37]

      Ueda, S.; Ali, S.; Fors, B. P.; Buchwald, S. L. J. Org. Chem. 2012, 77, 2543.  doi: 10.1021/jo202537e

    38. [38]

      Lopes, A. B.; Wagner, P.; Souza, R. O. M. A.; Germain, N. L.; Uziel, J.; Bourguignon, J.-J.; Schmitt, M.; Miranda, L. S. M. J. Org. Chem. 2016, 81, 4540.  doi: 10.1021/acs.joc.6b00323

    39. [39]

      Wen, J.; Zhu, L.-L.; Bi, Q.-W.; Shen, Z.-Q.; Li, X.-X.; Li, X.; Wang, Z.; Chen, Z. Chem.-Eur. J. 2014, 20, 974.  doi: 10.1002/chem.201302761

    40. [40]

      Gu, C.-X.; Bi, Q.-W.; Gao, C.-K.; Wen, J.; Zhao, Z.-G.; Chen, Z. Org. Biomol. Chem. 2017, 15, 3396.  doi: 10.1039/C7OB00329C

    41. [41]

      Zhang, Y.-C.; Jin, R.; Li, L.-Y.; Chen, Z.; Fu, L.-M. Molecules 2017, 22, 1380.  doi: 10.3390/molecules22091380

    42. [42]

      Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.  doi: 10.1021/jo300592t

    43. [43]

      Stewart, S.; Harris, R.; Jamieson, C. Synlett 2014, 2480.
       

    44. [44]

      Wu, L.; Guo, S.; Wang, X.; Guo, Z.; Yao, G.; Lin, Q.; Wu, M. Tetrahedron Lett. 2015, 56, 2145.  doi: 10.1016/j.tetlet.2015.03.019

    45. [45]

      Gavlik, K. D.; Lesogorova, S. G.; Sukhorukova, E. S.; Subbotina, J. O.; Slepukhin, P. A.; Benassi, E.; Belskaya, N. P. Eur. J. Org. Chem. 2016, 2700.

    46. [46]

      Ai, W. M. S. Thesis, Dalian University of Technology, Dalian, 2008 (in Chinese).

    47. [47]

      Liu, G.-B.; Zhao, H.-Y.; Yang, H.-J.; Gao, X.; Li, M.-K.; Thiemannb, T. Adv. Synth. Catal. 2007, 349, 1637.  doi: 10.1002/(ISSN)1615-4169

    48. [48]

      Dong, J.; Jin, B.; Sun, P. Org. Lett. 2014, 16, 4540.  doi: 10.1021/ol502090n

    49. [49]

      Zhou, Z.; Liu, Q.-L.; Li, W.; Zhu, Y.-M. Heterocycles 2011, 83, 2057.  doi: 10.3987/COM-11-12264

    50. [50]

      Kale, R. R.; Prasad, V.; Hussain, H. A.; Tiwari, V. K. Tetrahedron Lett. 2010, 51, 5740.  doi: 10.1016/j.tetlet.2010.08.083

    51. [51]

      Shang, X.; Zhao, S.; Chen, W.; Chen, C.; Qiu, H. Chem.-Eur. J. 2014, 20, 1825.  doi: 10.1002/chem.v20.7

    52. [52]

      Liu, Q.-L.; Wen, D.-D.; Hang, C.-C.; Li, Q.-L.; Zhu, Y.-M. Helv. Chim. Acta 2010, 93, 1350.  doi: 10.1002/hlca.v93:7

    53. [53]

      Zhou, J.; He, J.; Wang, B.; Yang, W.; Ren, H. J. Am. Chem. Soc. 2011, 133, 6868.  doi: 10.1021/ja2007438

    54. [54]

      Ryu, T.; Min, J.; Choi, W.; Jeon, W. H.; Lee, P. H. Org. Lett. 2014, 16, 2810.  doi: 10.1021/ol501250t

    55. [55]

      Khatun, N.; Modi, A.; Ali, W.; Patel, B. K. J. Org. Chem. 2015, 80, 9662.  doi: 10.1021/acs.joc.5b01706

    56. [56]

      Li, J.; Zhou, H.; Zhang, J.; Yang, H.; Jiang, G. Chem. Commun. 2016, 52, 9589.  doi: 10.1039/C6CC04341K

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    7. [7]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    8. [8]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    13. [13]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(18)
  • Abstract views(1814)
  • HTML views(409)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return