Citation: Zhang Weijie, Xu Li, Song Jinsheng, Ma Zhiying, Wang Hua. Synthesis of Saddle-Shaped Cyclooctatetrathiophene-Triazine Derivatives and Their Aggregation Induced Emissions (AIE) Properties[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1119-1125. doi: 10.6023/cjoc201710017 shu

Synthesis of Saddle-Shaped Cyclooctatetrathiophene-Triazine Derivatives and Their Aggregation Induced Emissions (AIE) Properties

  • Corresponding author: Ma Zhiying, mazy11@henu.edu.cn Wang Hua, hwang@henu.edu.cn
  • Received Date: 16 October 2017
    Revised Date: 8 February 2018
    Available Online: 11 May 2018

    Fund Project: the National Natural Science Foundation of China 21672054Project supported by the National Natural Science Foundation of China (Nos. 21672053, 21672054, 21703055), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. C20150011)the National Natural Science Foundation of China 21703055the National Natural Science Foundation of China 21672053the Innovation Scientists and Technicians Troop Construction Projects of Henan Province C20150011

Figures(6)

  • With saddle-shaped cyclooctatetrathiophene (COTh) and 1, 3, 5-triazine as building blocks, three derivatives bearing one, two and three COTh units are synthesized via Kumada-typed reaction. Theoretical calculations indicate that the two absorption peaks in long wavelength region are derived from intramolecular charge transfer (CT) absorption. 2, 4- Di(methoxyl)-6-(5, 8, 11-tris(trimethylsilyl)cycloocta [1, 2-b:4, 3-b':5, 6-b":8, 7-b'"]tetrathiophen-2-yl)-1, 3, 5-triazine (1), 2-meth- oxyl-4, 6-di(5, 8, 11-tris(trimethyl-silyl)cycloocta [1, 2-b:4, 3-b':5, 6-b":8, 7-b'"]tetrathiophen-2-yl)-1, 3, 5-triazine (2) and 2, 4, 6-tris- (5, 8, 11-tris(trimethylsilyl)cycloocta [1, 2-b:4, 3-b':5, 6-b":8, 7-b'"]tetrathiophen-2-yl)-1, 3, 5-triazine (3) exhibit intramolecular charge transfer (ICT) state emission peaked in region of 560~570 nm in solution at room temperature, and give both local emission of COTh peaked at 400 nm and ICT state emission peaked in region of 480~500 nm in rigid solution at 77 K. In tetrahydrofuran (THF)-H2O binary solvent system, compounds 1, 2 and 3 show typical aggregation induced emissions (AIE), which may be controlled by mechanism of restriction of intramolecular rotations (RIR) and restriction of intramolecular vibration (RIV). Crystal structure of 1 shows that intramolecular two rings of triazine and its linked thiophene are planar. There are strong C-C interactions between intermolecular rings of triazine and thiophene, which restrict the intramolecular rotation between triazine and thiophene rings. Such intermolecular C-C interactions are helpful to decrease the process of non-irradiative decay and increase AIE emission.
  • 加载中
    1. [1]

      (a) Greving, B. ; Woltermann, A. ; Kauffmann, T. Angew. Chem., Int. Ed. 1974, 13, 467.
      (b) Kauffmann, T. ; Greving, B. ; König, J. ; Mitschker, A. ; Woltermann, A. Angew. Chem., Int. Ed. 1975, 14, 713.

    2. [2]

      Kauffmann, T.; Mackowiak, H. P. Chem. Ber. 1985, 118, 2343.  doi: 10.1002/(ISSN)1099-0682

    3. [3]

      Marsella, M. J.; Reid, R. J. Macromolecules 1999, 32, 5982.  doi: 10.1021/ma990892r

    4. [4]

      Marsella, M. J.; Reid, R. J.; Estassi, S.; Wang, L. S. J. Am. Chem. Soc. 2002, 124, 12507.  doi: 10.1021/ja0255352

    5. [5]

      Zhang, S.; Liu, X.; Li, C.; Li, L.; Song, J.; Shi, J.; Morton, M.; Rajca, S.; Rajca, A.; Wang, H. J. Am. Chem. Soc. 2016, 138, 10002.  doi: 10.1021/jacs.6b05709

    6. [6]

      (a) Li, L. ; Zhao, C. ; Wang, H. Chem. Rec. 2016, 16, 797.
      (b) Zhao, C. ; Xu, L. ; Wang, Y. ; Li, C. ; Wang, H. Chin. J. Chem. 2015, 33, 71.
      (c) Wang, Y. ; Song, J. ; Xu, L. ; Kan, Y. ; Shi, J. ; Wang, H. J. Org. Chem. 2014, 79, 2255.

    7. [7]

      (a) Duan, Y. ; Xu, X. ; Yan, H. ; Wu, W. ; Li, Z. ; Peng, Q. Adv. Mater. 2017, 1605115.
      (b) Lim, K. ; Kang, M. -S. ; Myung, Y. ; Seo, J. -H. ; Banerjee, P. ; Marks, T. J. ; Ko, J. J. Mater. Chem. A 2016, 4, 1186.

    8. [8]

      (a) Anke, S. ; Tatyana, S. ; Edwin, K. Coord. Chem. Rev. 2013, 257, 2032.
      (b) Kheria, S. ; Rayavarapu, S. ; Kotmale, A. S. ; Gonnade, R. G. ; Sanjayan, G. J. Chem. -Eur. J. 2017, 23, 783.

    9. [9]

      Wang, H.; Zeng, Z.; Zeng, H.-P. Chin. J. Org. Chem. 2013, 33, 915(in Chinese).
       

    10. [10]

      Xu, L.; Wang, P.-F.; Zhang, J.-J.; Wu, W.; Shi, J.-W.; Yuan, J.-F.; Han, H.; Wang, H. RSC Adv. 2015, 5, 51745.  doi: 10.1039/C5RA08833J

    11. [11]

      (a) Luo, J. ; Xie, Z. ; Lam, J. W. Y. ; Cheng, L. ; Tang, B. Z. ; Chen, H. ; Qiu, C. ; Kwok, H. S. ; Zhan, X. ; Liu, Y. Chem. Commun. 2001, 1740.
      (b) Mei, J. ; Leung, N. L. C. ; Kwok, R. T. K. ; Lam, J. W. Y. ; Tang, B. Z. Chem. Rev. 2015, 115, 11718.

    12. [12]

      Wang, Y.; Gao, D. W.; Shi, J. W.; Kan, Y. H.; Song, J. S.; Li, C. L.; Wang, H. Tetrahedron 2014, 70, 631.  doi: 10.1016/j.tet.2013.12.002

    13. [13]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D01, Gaussian, Inc., Wallingford CT, 2013.
       

    14. [14]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.  doi: 10.1063/1.3382344

    15. [15]

      Goerigk, L.; Grimme, S. J. Chem. Phys. 2010, 132, 184103.  doi: 10.1063/1.3418614

    16. [16]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.v33.5

    17. [17]

      Bu, F.; Duan, R.; Xie, Y.; Yi, Y.; Peng, Q.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 14492.  doi: 10.1002/anie.201506782

    18. [18]

      (a) Luo, J. ; Song, K. ; Gu, F. L. ; Miao, Q. Chem. Sci. 2011, 2, 2029.
      (b) Leung, N. L. ; Xie, N. ; Yuan, W. ; Liu Y. ; Wu, Q. ; Peng, Q. ; Miao, Q. ; Lam, J. W. Y. ; Tang, B. Z. Chem. -Eur. J. 2014, 20, 15349.

    19. [19]

      (a) Nishiuchi, T. ; Tanaka, K. ; Kuwatani, Y. ; Sung, J. ; Nishinaga, T. ; Kim, D. ; Iyoda, M. Chem. -Eur. J. 2013, 19, 4110.
      (b) Yuan, C. ; Saito, S. ; Camacho, C. ; Kowalczyk, T. ; Irle, S. ; Yamaguchi, S. Chem. -Eur. J. 2014, 20, 2193.

    20. [20]

      Yuan, C. X.; Tao, X. T.; Ren, Y.; Li, Y.; Yang, J. X.; Yu, W. T.; Wang, L.; Jiang, M. H. J. Phys. Chem. C 2007, 111, 12811.  doi: 10.1021/jp0711601

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    18. [18]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(18)
  • Abstract views(3317)
  • HTML views(985)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return