Citation: Songbuer, Li Minghui, Imerhasan Mukhtar. Synthesis and Application of Acridine Derivatives[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 594-611. doi: 10.6023/cjoc201710007 shu

Synthesis and Application of Acridine Derivatives

  • Corresponding author: Imerhasan Mukhtar, imerhasan@yahoo.com
  • Received Date: 9 October 2017
    Revised Date: 19 October 2017
    Available Online: 3 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21462043)the National Natural Science Foundation of China 21462043

Figures(28)

  • Due to the special functional structural units and important applications in many fields, the study of acridine derivatives has become a hot topic worldwide. The large conjugated ring enables these dyes to be markers for fluorescence and imaging. Thanks to the ability of embedding into DNA chain, they have a wide range of applications in medicine and other fields. These dyes have the very similar color index value to that of the natural compounds. As an alternative to metal semiconductor material, acridines have presented potential value in the field of organic semiconductor materials. In recent years, emerging of the new and simple preparation technique, such as microwave assisted synthesis, metal free catalysis, one pot synthesis, and so on, has brought more attention to the synthesis and application of acridines. In this paper, various synthetic methods of acridine derivatives since 2010 and their applications in medicine, fluorescent materials, industrial dyeing materials and electroluminescence are introduced. The work about acridines accomplished in our group is also introduced. In the end, the future prospective of synthesis and application of acridine derivatives is proposed.
  • 加载中
    1. [1]

      Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem. Rev. 2009, 109, 4140.  doi: 10.1021/cr9001098

    2. [2]

      Kalirajan, R.; Muralidharan, V.; Jubie, S.; Gowramma, B.; Gomathy, S.; Sankar, S.; Elango, K. J. Heterocycl. Chem. 2012, 49, 748.  doi: 10.1002/jhet.848

    3. [3]

      Bonse, S.; Santelli, R. C.; Barbe, J.; Krauth-Siegel, R. L. J. Med. Chem. 1999, 42, 5448.  doi: 10.1021/jm990386s

    4. [4]

      Nadaraj, V.; Selvi, S. T.; Mohan, S. Eur. J. Med. Chem. 2009, 44, 976.  doi: 10.1016/j.ejmech.2008.07.004

    5. [5]

      Wilson, W. R.; Thompson, L. H.; Anderson, R. F.; Denny, W. A. J. Med. Chem. 1989, 32, 31.  doi: 10.1021/jm00121a007

    6. [6]

      Bastianelli, C.; Caia, V.; Cum, G.; Gallo, R.; Mancini, V. J. Chem. Soc., Perkin Trans. 21991, 679.

    7. [7]

      Jaycox, D.; Gribble, G. W.; Hacker, J. Heterocycl. Chem. 1987, 24, 1405.  doi: 10.1002/jhet.v24:5

    8. [8]

      Zhang, X.-P.; Shi, H.-L.; Yan, M. Med. Ind. 1984, 3, 8(in Chinese).
       

    9. [9]

      Velingkar, V. S.; Dandekar, V. D. Chin. J. Chem. 2011, 29, 504.  doi: 10.1002/cjoc.201190113

    10. [10]

      Ferreira, R.; Avinó, A.; Mazzini, S.; Eritja, R. Molecules 2012, 17, 7067.  doi: 10.3390/molecules17067067

    11. [11]

      Geddes, C. D. Dyes Pigm. 2000, 45, 243.  doi: 10.1016/S0143-7208(00)00025-5

    12. [12]

      Goel, A.; Kumar, V.; Singh, S. P.; Sharma, A.; Prakash, S.; Singh, C.; Anand, R. S. J. Mater. Chem. 2012, 22, 14880.  doi: 10.1039/c2jm31052j

    13. [13]

      Chen, P.; Wang, Y.-Y.; Zhang, Y. M.; Zhang, X. A. Acta Chim. Sinica 2016, 74, 669(in Chinese).  doi: 10.11862/CJIC.2016.069

    14. [14]

      Bernthsen, A. Ann. 1878, 192, 1.
       

    15. [15]

      Bernthsen, A. Ann. 1884, 224, 1.
       

    16. [16]

      Popp, F. D. J. Org. Chem. 1962, 27, 2658.  doi: 10.1021/jo01054a518

    17. [17]

      Roopan, S. M.; Nawaz Khan, F. R. Med. Chem. Res. 2011, 20, 732.  doi: 10.1007/s00044-010-9381-7

    18. [18]

      Das, S.; Thakur, A. J. Green Chem. Lett. Rev. 2011, 4, 131.  doi: 10.1080/17518253.2010.521775

    19. [19]

      Avila, J. M.; Vargas, F. D.; Camacho, S. P. D.; Rivero, I. A. RSC Adv. 2012, 2, 1827.  doi: 10.1039/c1ra01135a

    20. [20]

      Kaur, B.; Kumar, H. J. Chem. Sci. 2013, 125, 989.  doi: 10.1007/s12039-013-0431-9

    21. [21]

      Kaur, B.; Parmar, A.; Kumar, H. Heterocycl. Lett. 2011, 1, 59.
       

    22. [22]

      Kaur, B.; Parmar, A.; Kumar, H. Synth. Commun. 2012, 42, 453.

    23. [23]

      Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Heterocycl. Commun. 2009, 15, 57.
       

    24. [24]

      Gómez, A. H.; Herd, E.; Uzelac, M.; Cadenbach, T.; Kennedy, A. R.; Borilovic, I.; Aromí, G.; Hevia, E. Organometallics 2015, 34, 2614.  doi: 10.1021/om501251q

    25. [25]

      Kozlov, N. G.; Bondarev, S. L.; Kadutskii, A. P.; Basalaeva, L. I. Zh. Org. Khim. 2010, 46, 209.
       

    26. [26]

      Kozlov, N. G.; Bondarev, S. L.; Knyukshto, V. N.; Odnoburtsev, B. A.; Basalaeva, L. I. Zh. Org. Khim. 2010, 46, 1639.
       

    27. [27]

      Kozlov, N. G. Zh. Org. Khim. 2011, 47, 1675.

    28. [28]

      Kozlov, N. G.; Gusak, K. N. Zh. Org. Khim. 2006, 42, 1680.
       

    29. [29]

      Kozlov, N. G.; Tereshko, A. B.; Gusak, K. N. Zh. Org. Khim. 2006, 42, 281.
       

    30. [30]

      Kozlov, N. G.; Gusak, K. N. Zh. Obshch. Khim. 2006, 76, 294.
       

    31. [31]

      Silaichev, P. S.; Dmitriev, M. V.; Aliev, Z. G.; Maslivets, A. N. Zh. Org. Khim. 2010, 46, 1173.
       

    32. [32]

      Romain, M.; Tondelier, D.; Geffroy, B.; Shirinskaya, A.; Jeannin, O.; Berthelot, J. R.; Poriel, C. Chem. Commun. 2015, 51, 1313.  doi: 10.1039/C4CC08028A

    33. [33]

      Ghadari, R.; Hajishaabanha, F.; Mahyari, M.; Shaabani, A.; Khavasi, H. R. Tetrahedron Lett. 2012, 53, 4018.  doi: 10.1016/j.tetlet.2012.05.107

    34. [34]

      Yeşildağ, I.; Ulus, R.; Başar, E.; Aslan, M.; Kaya, M.; Buülbül, M. Monatsh Chem. 2014, 145, 1027.  doi: 10.1007/BF03246091

    35. [35]

      Ghorbani-Vaghei, R.; Malaekehpoor, S. M. J. Iran. Chem. Soc. 2010, 7, 957.  doi: 10.1007/s00706-013-1145-x

    36. [36]

      Mahajan, S.; Khullar, S.; Mandal, S. K.; Singh, I. P. Chem. Commun. 2014, 50, 10078.  doi: 10.1039/C4CC03079F

    37. [37]

      Yang, X. J.; Zhang, C.; Wu, L. Q. RSC Adv. 2015, 5, 18945.  doi: 10.1039/C4RA16372A

    38. [38]

      Yang, X. J.; Zhang, C.; Wu, L. Q. RSC Adv. 2015, 5, 25115.  doi: 10.1039/C5RA00887E

    39. [39]

      Jagadishbabu, N.; Shivashankar, K. RSC Adv. 2015, 5, 95240.  doi: 10.1039/C5RA19595K

    40. [40]

      Caballero, A. B.; Guillena, G. G.; Nájera, C. J. Org. Chem. 2013, 78, 5349.  doi: 10.1021/jo2025114

    41. [41]

      Liang, T.; Xiao, J.; Xiong, Z. Y.; Li, X. W. J. Org. Chem. 2012, 77, 3583.  doi: 10.1021/jo400522m

    42. [42]

      Wang, H. Y.; Li, L. L.; Lin, W.; Xu, P.; Huang, Z. B.; Shi, D. Q. Org. Lett. 2012, 14, 4598.  doi: 10.1021/ol302058g

    43. [43]

      Li, C. M.; Zhang, F. R. RSC Adv. 2016, 6, 75359.  doi: 10.1039/C6RA18048E

    44. [44]

      Hao, W. J.; Wang, J. Q.; Xu, X. P.; Zhang, S. L.; Wang, S. Y.; Ji, S. J. J. Org. Chem. 2013, 78, 12362.  doi: 10.1021/jo401773j

    45. [45]

      Rogness, D. C.; Larock, R. C. J. Org. Chem. 2010, 75, 2289.  doi: 10.1021/jo1000687

    46. [46]

      Han, X. D.; Zhao, Y. L.; Meng, J.; Ren, C. Q.; Liu, Q. J. Org. Chem. 2012, 77, 5173.  doi: 10.1021/jo300615t

    47. [47]

      Verma, A. K.; Reddy Kotla, S. K.; Aggarwal, T.; Kumar, S.; Nimesh, H.; Tiwari, R. K. J. Org. Chem. 2013, 78, 5372.  doi: 10.1021/jo400539x

    48. [48]

      Gimenez-Arnau, E.; Missailidis, S.; Stevens, M. F. G. Anti-Cancer Drug Des. 1998, 13, 431.
       

    49. [49]

      McCarthy, P. J.; Pitts, T. P.; Gunawardana, G. P.; Kelly-Borges, M.; Pomponi, S. A. J. Nat. Prod. 1992, 55, 1664.  doi: 10.1021/np50089a016

    50. [50]

      Sarkar, P.; Mukhopadhyay, C. Green Chem. 2015, 17, 3452.  doi: 10.1039/C5GC00156K

    51. [51]

      Khalil, I. M.; Barker, D.; Copp, B. R. J. Org. Chem. 2016, 81, 282.  doi: 10.1021/acs.joc.5b02312

    52. [52]

      Marshall, K. M.; Barrows, L. R. Nat. Prod. Rep. 2004, 21, 731.  doi: 10.1039/b401662a

    53. [53]

      Gu, Z. Y.; Liu, C. G.; Wang, S. Y.; Ji, S. J. Org. Lett. 2016, 18, 2379.  doi: 10.1021/acs.orglett.6b00843

    54. [54]

      Ma, Y. G.; Qiang, W. W.; Li, C.; Zhang, M. M.; Wang, X. S. Monatsh. Chem. 2016, 147, 1233.  doi: 10.1007/s00706-015-1625-2

    55. [55]

      Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem Soc. 2010, 132, 14048.  doi: 10.1021/ja107511g

    56. [56]

      Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 11232.  doi: 10.1021/jo302378w

    57. [57]

      Lian, Y. J.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 12548.  doi: 10.1021/ja406131a

    58. [58]

      Guo, H. M.; Mao, R. Z.; Wang, Q. T.; Niu, H. Y.; Xie, M. S.; Qu, G. R. Org. Lett. 2013, 15, 5460.  doi: 10.1021/ol402596g

    59. [59]

      Su, Q.; Li, P.; He, M. N.; Wu, Q. L.; Ye, L.; Mu, Y. Org. Lett. 2014, 16, 18.  doi: 10.1021/ol402732n

    60. [60]

      Zheng, Z. S.; Dian, L. Y.; Yuan, Y. C.; Negrerie, D. Z.; Du, Y. F.; Zhao, K. J. Org. Chem. 2014, 79, 7451.  doi: 10.1021/jo5011697

    61. [61]

      Pang, X. L.; Chen, C.; Su, X.; Li, M.; Wen, L. R. Org. Lett. 2014, 16, 6228.  doi: 10.1021/ol503156g

    62. [62]

      Wang, T. J.; Chen, W. W.; Li, Y. Xu, M. H. Org. Biomol. Chem. 2015, 13, 6580.  doi: 10.1039/C5OB00755K

    63. [63]

      Sarkar, R.; Mukhopadhyay, C. Org. Biomol. Chem. 2016, 14, 2706.  doi: 10.1039/C5OB02655E

    64. [64]

      Zhikharko, Y. D.; Kozlov, N. G.; Basalaeva, L. I. Zh. Org. Khim. 2016, 52, 383.
       

    65. [65]

      Natrajan, A.; Wen, D. Green Chem. 2011, 13, 913.  doi: 10.1039/c0gc00758g

    66. [66]

      Hyodo, I.; Tobisu, M.; Chatani, N. Chem. Commun. 2012, 48, 308.  doi: 10.1039/C1CC16582H

    67. [67]

      Zhang, Z. G.; Gao, Y.; Liu, Y.; Li, J. J.; Xie, H. X.; Li, H.; Wang, W. Org. Lett. 2015, 17, 5492.  doi: 10.1021/acs.orglett.5b02877

    68. [68]

      Chate, A. V.; Rathod, U. B.; Kshirsagar, J. S.; Gaikwad, P. A.; Mane, K. D.; Mahajan, P. S.; Nikam, M. D.; Gill, C. H. Chin. J. Catal. 2016, 37, 146.  doi: 10.1016/S1872-2067(15)61005-1

    69. [69]

      Imerhasan, M.; Wang, T.; Helil, S.; Osman, K.; Muhammad, T. Chin. J. Org. Chem. 2010, 30, 1884(in Chinese).
       

    70. [70]

      Sondhi, S. M.; Singh, J.; Rani, R.; Gupta, P. P.; Agrawal, S. K.; Saxena, A. K. Eur. J. Med. Chem. 2010, 45, 555.  doi: 10.1016/j.ejmech.2009.10.042

    71. [71]

      Patel, M. M.; Mali, M. D.; Patel, S. K. Bioorg. Med. Chem. Lett. 2010, 20, 6324.  doi: 10.1016/j.bmcl.2010.06.001

    72. [72]

      Graham, L. A.; Wilson, G. M.; West, T. K.; Day, C. S.; Kucera, G. L.; Bierbach, U. ACS Med. Chem. Lett. 2011, 2, 687.  doi: 10.1021/ml200104h

    73. [73]

      Kumar, P.; Kumar, R.; Prasad, D. N. P. Arabian J. Chem. 2013, 6, 79.  doi: 10.1016/j.arabjc.2012.04.039

    74. [74]

      Mahsud, L.; Imerhasan, M.; Mahmud, M. A.; Helil, S.; Liu, H. J. Chin. J. Org. Chem. 2014, 34, 1235(in Chinese).
       

    75. [75]

      Haydar, G.; Imerhasan, M.; Eshbakova, K. A.; Kurbanbaeva, A. E. J. Pharm. Biol. Sci. 2016, 4, 41.
       

    76. [76]

      Tian, X. Y.; Yang, D.; Pan, Y. M.; Tong, B. H.; Su, G. F.; Wang, H. S. Chin. J. Org. Chem. 2011, 31, 346(in Chinese).
       

    77. [77]

      Percivalle, C.; Mahmood, T.; Ladame, S. Med. Chem. Commun. 2013, 4, 211.  doi: 10.1039/C2MD20173A

    78. [78]

      Centelles, V. M.; Burguete, M. I.; Galindo, F.; Izquierdo, M. A.; Kumar, D. K.; White, A. J. P.; Luis, S. V.; Vilar, R. J. Org. Chem. 2012, 77, 490.  doi: 10.1021/jo202077v

    79. [79]

      Jana, A.; Saha, B.; Karthik, S.; Barman, S.; Ikbal, M.; Ghosh, S. K.; Singh, N. D. P. Photochem. Photobiol. Sci. 2013, 12, 1041.  doi: 10.1039/c3pp25362g

    80. [80]

      Fusco, M. D.; Quintavalla, A.; Trombini, C.; Lombardo, M.; Roda, A.; Guardigli, M.; Mirasoli, M. J. Org. Chem. 2013, 78, 11238.  doi: 10.1021/jo401683r

    81. [81]

      Chen, D.; Zhang, X. Q.; Zhang, J. Y.; Wang, Y. Chem. J. Chin. Univ. 2015, 36, 484(in Chinese).
       

    82. [82]

      Seo, J. A.; Jeon, S. K.; Gong, M. S.; Lee, J. Y.; Noh, C. H.; Kim, S. H. J. Mater. Chem. C 2015, 3, 4640.  doi: 10.1039/C5TC00640F

    83. [83]

      Zhao, Y. -P. M. S. Thesis, Fujian Medical University, Fuzhou, 2015(in Chinese).

  • 加载中
    1. [1]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    4. [4]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    10. [10]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    11. [11]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    18. [18]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

Metrics
  • PDF Downloads(61)
  • Abstract views(3547)
  • HTML views(786)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return