Citation: Zhou Hao, Chen Zhiyuan. Recent Achievements in the Synthesis of Sulfoximine Derivatives[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 719-737. doi: 10.6023/cjoc201710002 shu

Recent Achievements in the Synthesis of Sulfoximine Derivatives

  • Corresponding author: Chen Zhiyuan, zchen@jxnu.edu.cn
  • Received Date: 6 October 2017
    Revised Date: 29 November 2017
    Available Online: 15 April 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21462022, 21672085)Project supported by the National Natural Science Foundation of China 21672085Project supported by the National Natural Science Foundation of China 21462022

Figures(30)

  • The sulfoximine derivatives are widely known for their potent biological and medicinal activities. Recently, due to the transition-metal catalysis, great advancements have been achieved in the synthesis of sulfoximine derivatives. Utilizing free NH-sulfoximines as the starting materials, various the direct N-H functionalizations can be accomplished, such as alkynylation, alkenylation, alkylation, arylation, etc. In addition, the ortho arene C(sp2)-H activation can also be obtained through C-H activation reaction with the assistance of S=NH as intramolecular directing groups, thus giving varies (hetero)aromatic molecules. N-H and C-H functionalization reactions of sulfoximines were summarized, and the mechanisms of some novel model reactions are also briefly discussed.
  • 加载中
    1. [1]

      Bentley, H. R.; McDermott, E. E.; Pace, J.; Whitehead, J. K.; Moran, T. Nature 1950, 165, 150.  doi: 10.1038/165150a0

    2. [2]

      (a) Langner, M. ; Bolm, C. Angew. Chem. , Int. Ed. 2004, 43, 5984.
      (b) Shen, X. ; Zhang, W. ; Ni, C. ; Gu, Y. ; Hu, J. J. Am. Chem. Soc. 2012, 134, 16999.
      (c) Harmata, M. ; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754.
      (d) Koep, S. ; Gais, H. -J. ; Raabe, G. J. Am. Chem. Soc. 2003, 125, 13243.
      (e) Moessner, C. ; Bolm, C. Angew. Chem. , Int. Ed. 2005, 44, 7564.

    3. [3]

      Miller, P.; James, G. W. L. Arch. Int. Pharmacodyn. Ther. 1978, 231, 328.
       

    4. [4]

      Park, S. J.; Baars, H.; Mersmann, S.; Buschmann, H.; Baron, J. M.; Amann, P. M.; Czaja, K.; Hollert, H.; Bluhm, K.; Redelstein, R.; Bolm, C. ChemMedChem 2013, 8, 217.  doi: 10.1002/cmdc.201200403

    5. [5]

      Lucking, U.; Jautelat, R.; Kruger, M.; Brumby, T.; Lienau, P.; Schafer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; Siemeister, G. ChemMedChem 2013, 8, 1021.  doi: 10.1002/cmdc.201390025

    6. [6]

      Satzinger, G. Drug News Perspect. 2001, 14, 197.  doi: 10.1358/dnp.2001.14.4.858403

    7. [7]

      Von Nussbaum, F.; Karthaus, D.; Anlauf, S.; Delbeck, M.; Li, V.; Meibom, D.; Lustig, K.; Schneider, D. WO 2010115548, 2010.

    8. [8]

      Walker, D.; Zawistoski, M.; McGlynn, M.; Li, J.; Kung, D. W.; Bonnette, P.; Baumann, A.; Buckbinder, L.; Houser, J. A.; Boer, J.; Mistry, A.; Han, S.; Xing, L.; Perez, A. B. Bioorg. Med. Chem. Lett. 2009, 19, 3253.  doi: 10.1016/j.bmcl.2009.04.093

    9. [9]

      Ulrich, L. Angew. Chem., Int. Ed. 2013, 52, 9399.  doi: 10.1002/anie.v52.36

    10. [10]

      (a) Bentley, H. R. ; Whitehead, J. K. J. Chem. Soc. 1952, 1572.
      (b) Johnson, C. R. ; Haake, M. ; Schroeck, C. W. J. Am. Chem. Soc. 1970, 92, 6594.
      (c) Stoss, P. ; Satzinger, G. Angew. Chem. , Int. Ed. 1971, 10, 76.
      (d) Johnson, C. R. ; Schroeck, C. W. J. Am. Chem. Soc. 1973, 95, 7418.
      (e) Rynbrandt, R. H. ; Balgoyen, D. P. J. Org. Chem. 1978, 43, 1824.
      (f) Brandt, J. ; Gais, H. J. Tetrahedron: Asymmetry 1997, 8, 909.

    11. [11]

      (a) Tamura, Y. ; Sumoto, K. ; Minamikawa, J. ; Ikeda, M. Tetrahedron Lett. 1972, 4137.
      (b) Tamura, Y. ; Minamikawa, J. ; Sumoto, K. ; Fujii, S. ; Ikeda, M. J. Org. Chem. 1973, 38, 1239.
      (c) Johnson, C. R. ; Kirchhoff, R. A. ; Corkins, H. G. J. Org. Chem. 1974, 39, 2458.
      (d) Allenmark, S. ; Claeson, S. ; Lowendahl, C. Tetrahedron: Asymmetry 1996, 7, 361.

    12. [12]

      (a) Takada, H. ; Ohe, K. ; Uemura, S. Angew. Chem. , Int. Ed. 1999, 38, 1288.
      (b) Lacote, E. ; Amatore, M. ; Fensterbank, L. ; Malacria, M. Synlett 2002, 116.
      (c) Cren, S. ; Kinahan, T. C. ; Skinner, C. L. ; Tye, H. Tetrahedron Lett. 2002, 43, 2749.
      (d) Okamura, H. ; Bolm, C. Org. Lett. 2004, 6, 1305.
      (e) Cho, G. Y. ; Bolm, C. Org. Lett. 2005, 7, 4983.
      (f) Mancheno, O. G. ; Bolm, C. Org. Lett. 2006, 8, 2349.
      (g) Mancheno, O. G. ; Dallimore, J. ; Plant, A. ; Bolm, C. Org. Lett. 2009, 11, 2429.

    13. [13]

      Miao, J.; Richards, N. G. J.; Ge, H. Chem. Commun. 2014, 50, 9687.  doi: 10.1039/C4CC04349A

    14. [14]

      Zenzola, M.; Doran, R.; Degennaro, L.; Luisi, R.; Bull, J. A. Angew. Chem., Int. Ed. 2016, 55, 7203.  doi: 10.1002/anie.201602320

    15. [15]

      Wang, J.; Frings, M.; Bolm, C. Chem.-Eur. J. 2014, 20, 966.  doi: 10.1002/chem.201303850

    16. [16]

      Cheng, Y.; Dong, W.; Wang, L.; Parthasarathy, K.; Bolm, C. Org. Lett. 2014, 16, 2000.  doi: 10.1021/ol500573f

    17. [17]

      Teng, F.; Cheng, J.; Yu, J.-T. Org. Biomol. Chem. 2015, 13, 9934.  doi: 10.1039/C5OB01558H

    18. [18]

      Teng, F.; Sun, S.; Jiang, Y.; Yu, J.-T.; Cheng, J. Chem. Commun. 2015, 51, 5902.  doi: 10.1039/C5CC00839E

    19. [19]

      Teng, F.; Cheng, J.; Bolm, C. Org. Lett. 2015, 17, 3166.  doi: 10.1021/acs.orglett.5b01537

    20. [20]

      Wang, H.; Frings, M.; Bolm, C. Org. Lett. 2016, 18, 2431.  doi: 10.1021/acs.orglett.6b00958

    21. [21]

      Dehli, J. R.; Bolm, C. J. Org. Chem. 2004, 69, 8518.  doi: 10.1021/jo0485583

    22. [22]

      Chen, X.-Y.; Bohmann, R. A.; Wang, L.; Dong, S.; R uber, C.; Bolm, C. Chem.-Eur. J. 2015, 21, 10330.  doi: 10.1002/chem.201501629

    23. [23]

      Chen, Z.; Huang, J.; Wang, Z. J. Org. Chem. 2016, 81, 9308.  doi: 10.1021/acs.joc.6b01891

    24. [24]

      Wang, L.; Huang, H.; Priebbenow, D. L.; Pan, F.-F.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 3478.  doi: 10.1002/anie.v52.12

    25. [25]

      Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett. 2013, 15, 6155.  doi: 10.1021/ol403106e

    26. [26]

      Chen, X. Y.; Wang, L.; Frings, M.; Bolm, C. Org. Lett. 2014, 16, 3796.  doi: 10.1021/ol5016898

    27. [27]

      Wang, H.; Cheng, Y.; Becker, P.; Raabe, G.; Bolm, C. Angew. Chem., Int. Ed. 2016, 55, 12655.  doi: 10.1002/anie.201605743

    28. [28]

      Pirwerdjan, R.; Priebbenow, D. L.; Becker, P.; Lamers, P.; Bolm, C. Org. Lett. 2013, 15, 5397.  doi: 10.1021/ol4026028

    29. [29]

      Pirwerdjan, R.; Becker, P.; Bolm, C. Org. Lett. 2015, 17, 5008.  doi: 10.1021/acs.orglett.5b02477

    30. [30]

      Pirwerdjan, R.; Becker, P.; Bolm, C. Org. Lett. 2016, 18, 3307.  doi: 10.1021/acs.orglett.6b01646

    31. [31]

      Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169.  doi: 10.1021/jo991342u

    32. [32]

      Cho, G. Y.; Rémy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6, 3293.  doi: 10.1021/ol048806h

    33. [33]

      Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70, 6904.  doi: 10.1021/jo051066l

    34. [34]

      Moessner, C.; Bolm, C. Org. Lett. 2005, 7, 2667.  doi: 10.1021/ol050816a

    35. [35]

      Kim, J.; Ok, J.; Kim, S.; Choi, W.; Lee, P. H. Org. Lett. 2014, 16, 4602.  doi: 10.1021/ol502174n

    36. [36]

      Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett. 2010, 13, 359.
       

    37. [37]

      Wang, L.; Priebbenow, D. L.; Dong, W.; Bolm, C. Org. Lett. 2014, 16, 2661.  doi: 10.1021/ol500963p

    38. [38]

      Aithagani, S. K.; Kumar, M.; Yadav, M.; Vishwakarma, R. A.; Singh, P. P. J. Org. Chem. 2016, 81, 5886.  doi: 10.1021/acs.joc.6b00593

    39. [39]

      Aithagani, S. K.; Dara, S.; Munagala, G.; Aruri, H.; Yadav, M.; Singh, P. P. Org. Lett. 2015, 17, 5547.  doi: 10.1021/acs.orglett.5b02804

    40. [40]

      Priebbenow, D. L.; Bolm, C. Org. Lett. 2014, 16, 1650.  doi: 10.1021/ol5003016

    41. [41]

      Zou, Y.; Xiao, J.; Peng, Z.; Dong, W.; An, D. Chem. Commun. 2015, 51, 14889.  doi: 10.1039/C5CC05483D

    42. [42]

      Qin, W. J.; Li, Y.; Yu, X.; Deng, W.-P. Tetrahedron 2015, 71, 1182.  doi: 10.1016/j.tet.2015.01.013

    43. [43]

      Dong, S.; Frings, M.; Cheng, H.; Wen, J.; Zhang, D.; Raabe, G.; Bolm, C. J. Am. Chem. Soc. 2016, 138, 2166.  doi: 10.1021/jacs.6b00143

    44. [44]

      Zhou, H.; Hong, J.; Huang, J.-P.; Chen, Z.-Y. Asian J. Org. Chem. 2017, 6, 817.  doi: 10.1002/ajoc.v6.7

    45. [45]

      Teng, F.; Yu, J. T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 8412.  doi: 10.1039/c4cc03439b

    46. [46]

      Hu, W.; Teng, F.; Peng, H.; Yu, J.; Sun, S.; Cheng, J. Shao, Y. Tetrahedron Lett. 2015, 56, 7056.  doi: 10.1016/j.tetlet.2015.11.025

    47. [47]

      Teng, F.; Yu, J.-T.; Zhou, Z.; Chu, H.; Cheng, J. J. Org. Chem. 2015, 80, 2822.  doi: 10.1021/jo502607c

    48. [48]

      Dannenberg, C. A.; Fritze, L.; Krauskopf, F.; Bolm, C. Org. Biomol. Chem. 2017, 15, 1086.  doi: 10.1039/C6OB02691E

    49. [49]

      Peng, H.; Yu, J. T.; Bao, W.; Xu, J.; Cheng, J. Org. Biomol. Chem. 2015, 13, 10600.  doi: 10.1039/C5OB01705J

    50. [50]

      Bohnen, C.; Bolm, C. Org. Lett. 2015, 17, 3011.  doi: 10.1021/acs.orglett.5b01384

    51. [51]

      Zhu, H.; Yu, J.-T.; Cheng, J. Chem. Commun. 2016, 52, 11908.  doi: 10.1039/C6CC06359D

    52. [52]

      Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Chem.-Eur. J. 2012, 18, 5541.  doi: 10.1002/chem.v18.18

    53. [53]

      Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Org. Lett. 2012, 14, 3724.  doi: 10.1021/ol301579q

    54. [54]

      Rit, R. K.; Yadav, M. R.; Ghosh, K.; Shankar, M.; Sahoo, A. K. Org. Lett. 2014, 16, 5258.  doi: 10.1021/ol502337b

    55. [55]

      Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638.  doi: 10.1021/ol400411v

    56. [56]

      Yadav, M. R.; Rit, R. K.; Shankar, M.; Sahoo, A. K. J. Org. Chem. 2014, 79, 6123.  doi: 10.1021/jo5008465

    57. [57]

      Yadav, M. R.; Shankar, M.; Ramesh, E.; Ghosh, K.; Sahoo, A. K. Org. Lett. 2015, 17, 1886.  doi: 10.1021/acs.orglett.5b00570

    58. [58]

      Raghuvanshi, K.; Zell, D.; Ackermann, L. Org. Lett. 2017, 19, 1278.  doi: 10.1021/acs.orglett.6b03898

    59. [59]

      Shankar, M.; Ghosh, K.; Mukherjee, K.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2016, 18, 6416.  doi: 10.1021/acs.orglett.6b03314

    60. [60]

      Chinnagolla, R. K.; Vijeta, A.; Jeganmohan, M. Chem. Commun. 2015, 51, 12992.  doi: 10.1039/C5CC04589D

    61. [61]

      Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z.-Y. Org. Lett. 2017, 19, 1128.  doi: 10.1021/acs.orglett.7b00120

    62. [62]

      Parthasarathy, K.; Bolm, C. Chem.-Eur. J. 2014, 20, 4896.  doi: 10.1002/chem.201304925

    63. [63]

      Dong, W.; Parthasarathy, K.; Cheng, Y.; Pan, F.; Bolm, C. Chem.-Eur. J. 2014, 20, 15732.  doi: 10.1002/chem.v20.48

    64. [64]

      Cheng, Y.; Dong, W.; Wang, H.; Bolm, C. Chem.-Eur. J. 2016, 22, 10821.  doi: 10.1002/chem.201602550

    65. [65]

      Dong, W.; Wang, L.; Parthasarathy, K.; Pan, F.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 11573.  doi: 10.1002/anie.201304456

    66. [66]

      Cheng, Y.; Bolm, C. Angew. Chem., Int. Ed. 2015, 127, 12526.  doi: 10.1002/ange.201501583

    67. [67]

      Jeon, W. H.; Son, J. Y.; Kim, J. E.; Lee, P. H. Org. Lett. 2016, 18, 3498.  doi: 10.1021/acs.orglett.6b01750

    68. [68]

      Wen, J.; Tiwari, D. P.; Bolm, C. Org. Lett. 2017, 19, 1706.  doi: 10.1021/acs.orglett.7b00488

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(43)
  • Abstract views(2436)
  • HTML views(692)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return