Citation: Yu Haiyang, Pi Chao, Wang Yong, Cui Xiuling, Wu Yangjie. Iodine-Catalyzed Regioselective Sulfonylation of Quinoline N-Oxides with Sulfonyl Hydrazides[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 124-130. doi: 10.6023/cjoc201709054 shu

Iodine-Catalyzed Regioselective Sulfonylation of Quinoline N-Oxides with Sulfonyl Hydrazides

  • Corresponding author: Cui Xiuling, cuixl@zzu.edu.cn
  • Received Date: 30 September 2017
    Revised Date: 14 November 2017
    Available Online: 15 January 2017

    Fund Project: the Ministry of Science and Technology of China 2016YFE0132600Project supported by the Ministry of Science and Technology of China (No. 2016YFE0132600) and the Science and Technology Innovation Program of Universities in Henan Province (No. 16HASTIT007)the Science and Technology Innovation Program of Universities in Henan Province 16HASTIT007

Figures(4)

  • A novel and simple protocol has been developed for the regioselective sulfonylation of quinolone N-oxides at their C-2 postition. This method features with a simple system, high efficiency, environmental friendliness, and metal-free conditions. Aliphatic and aryl sulfonyl hydrazides smoothly undergo sulfonylation with quinoline N-oxides in good yields.
  • 加载中
    1. [1]

      (a) Noshi, M. N. ; El-Awa, A. ; Torres, E. ; Fuchs, P. L. J. Am. Chem. Soc. 2007, 129, 11242.
      (b) Julia, M. ; Paris, J. M. Tetrahedron Lett. 1973, 14, 4833.
      (c) Meyers, C. Y. ; Malte, A. M. ; Matthews, W. S. J. Am. Chem. Soc. 1969, 91, 7510.
      (d) Söderman, S. C. ; Schwan, A. L. J. Org. Chem. 2012, 77, 10978.

    2. [2]

      (a) Zhang, C. P. ; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183.
      (b) Frankel, B. A. ; Bentley, M. ; Kruger, R. G. ; McCafferty, D. G. J. Am. Chem. Soc. 2004, 126, 3404.
      (c) Williams, T. M. ; Ciccarone, T. M. ; MacTough, S. C. ; Rooney, C. S. ; Balani, S. K. ; Condra, J. H. ; Emini, E. A. ; Goldman, M. E. ; Greenlee, W. J. ; Kauffman, L. R. ; O'Brien, J. A. ; Sardana, V. V. ; Schleif, W. A. ; Theoharides, A. D. ; Anderson, P. S. J. Med. Chem. 1993, 36, 1291.
      (d) Choi-Sledeski, Y. M. ; Kearney, R. ; Poli, G. ; Pauls, H. ; Gardner, C. ; Gong, Y. ; Becker, M. ; Davis, R. ; Spada, A. ; Liang, G. Y. ; Chu, V. ; Brown, K. ; Collussi, D. ; Leadley, R. ; Rebello, J. S. ; Moxey, P. ; Morgan, S. ; Bentley, R. ; Kasiewski, C. ; Maignan, S. ; Guilloteau, J. P. ; Mikol, V. J. Med. Chem. 2003, 46, 681.
      (e) Maignan, S. ; Guilloteau, J. P. ; Choi-Sledeski, Y. M. ; Becker, M. R. ; Ewing, W. R. ; Pauls, H. W. ; Spada, A. P. ; Mikol, V. J. Med. Chem. 2003, 46, 685.
      (f) Wang, G. ; Mahesh, U. ; Chen, G. Y. ; Yao, S. Q. Org. Lett. 2003, 5, 737.

    3. [3]

      Sahoo, S. K.; Banerjee, A.; Chakraborty, S.; Patel, B. K. ACS Catal. 2012, 2, 544.  doi: 10.1021/cs200590p

    4. [4]

      Trankle, W. G.; Kopach, M. E. Org. Process Res. Dev. 2007, 11, 913.  doi: 10.1021/op700060e

    5. [5]

      (a) Migita, T. ; Shimizu, T. ; Asami, Y. ; Shiobara, J. ; Kato, Y. ; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385.
      (b) Li, G. Y. Angew. Chem. , Int. Ed. 2001, 40, 1513.
      (c) Fernandez-Rodriguez, M. A. ; Shen, Q. ; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180.
      (d) Wong, Y. -C. ; Jayanth, T. T. ; Cheng, C. -H. Org. Lett. 2006, 8, 5613.
      (e) Rout, L. ; Sen, T. K. ; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583.
      (f) Correa, A. ; Carril, M. ; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880.
      (g) Buch-Wald, S. L. ; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.
      (h) Reddy, V. P. ; Kumar, A. V. ; Swapna, K. ; Rao, K. R. Org. Lett. 2009, 11, 1697.
      (i) Uyeda, C. ; Tan, Y. ; Fu, G. C. ; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548.
      (j) Xu, X. -B. ; Liu, J. ; Zhang, J. J. ; Wang, Y. -W. ; Peng, Y. Org. Lett. 2013, 15, 550.

    6. [6]

      (a) Kumar, S. ; Engman, L. J. Org. Chem. 2006, 71, 5400.
      (b) Taniguchi, N. J. Org. Chem. 2007, 72, 1241.
      (c) Zhang, S. ; Qian, P. ; Zhang, M. ; Hu, M. ; Cheng, J. J. Org. Chem. 2010, 75, 6732.

    7. [7]

      Park, N.; Park, K.; Jang, M.; Lee, S. J. Org. Chem. 2011, 76, 4371.  doi: 10.1021/jo2007253

    8. [8]

      (a) Qiao, H. J. ; Sun, S. Y. ; Yang, F. ; Zhu, Y. ; Zhu, W. G. ; Dong, Y. X. ; Wu, Y. S. ; Kong, X. T. ; Jiang, L. ; Wu, Y. J. Org. Lett. 2015, 17, 6086.
      (b) Rao, W. H. ; Shi, B. F. Org. Lett. 2015, 17, 2784.
      (c) Liu, J. D. ; Yu, L. ; Zhuang, S. B. ; Gui, Q. W. ; Chen, X. ; Wang, W. D. ; Tan, Z. Chem. Commun. 2015, 51, 6418.
      (d) Liang, H. W. ; Jiang, K. ; Ding, W. ; Yuan, Y. ; Shuai, L. ; Chen, Y. C. ; Wei, Y. Chem. Commun. 2015, 51, 16928.
      (e) Ge, B. Y. ; Wang, D. W. ; Dong, W. F. ; Ma, P. M. ; Li, Y. L. ; Ding, Y. Q. Tetrahedron Lett. 2014, 55, 5443.
      (f) Zhang, D. ; Cui, X. L. ; Zhang, Q. Q. ; Wu, Y. J. J. Org. Chem. 2015, 80, 1517.
      (g) Xu, Y. F. ; Liu, P. ; Li, S. L. ; Sun, P. P. J. Org. Chem. 2015, 80, 1269.

    9. [9]

      Zhao, X. D.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.  doi: 10.1021/ja900200g

    10. [10]

      Wu, Z. Y.; Song, H. Y.; Cui, X. L.; Pi, C.; Du, W. W.; Wu, Y. J. Org. Lett. 2013, 15, 1270.  doi: 10.1021/ol400178k

    11. [11]

      Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.; Kociok-Köhn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.  doi: 10.1021/ja208286b

    12. [12]

      Sun, K.; Chen, X. L.; Li, X.; Qu, L. B.; Bi, W. Z.; Chen, X.; Ma, H. L.; Zhang, S. T.; Han, B. W.; Zhao, Y. F.; Li, C. J. Chem. Commun. 2015, 51, 12111.  doi: 10.1039/C5CC04484G

    13. [13]

      (a) Zhao, X.; Zhang, L. P.; Lu, X. Y.; Li, T. J.; Lu, K. J. Org. Chem. 2015, 80, 2918.
      (b) Sun, J.; Qiu, J. K.; Zhu, Y. L.; Guo, C.; Hao, W. J.; Jiang, B.; Tu, S. J. J. Org. Chem. 2015, 80, 8217.
      (c) Zhao, X.; Zhang, L. P.; Li, T. J.; Liu, G. Y.; Wang, H. M.; Lu, K. Chem. Commun. 2014, 50, 13121.
      (d) Kang, X.; Yan, R. L.; Yu, G. Q.; Pang, X. B.; Liu, X. X.; Li, X. L.; Xiang, L. K.; Huang, G. S. J. Org. Chem. 2014, 79, 10605.
      (e) Adiyala, P. R.; Chandrasekhar, D.; Kapure, J. S.; Reddy, C. N.; Maurya, R. A. Beilstein J. Org. Chem. 2014, 10, 2065.
      (f) Mohammed, S.; Vishwakarma, R. A.; Bharate, S. B. J. Org. Chem. 2015, 80, 6915.
      (g) Tang, S.; Liu, K.; Long, Y.; Gao, X. L.; Gao, M.; Lei, A. W. Org. Lett. 2015, 17, 2404.
      (h) Singh, R.; Allam, B. K.; Singh, N.; Kumari, K.; Singh, S. K.; Singh, K. N. Org. Lett. 2015, 17, 2656.
      (i) Guo, S. J.; Wan, G.; Sun, S.; Jiang, Y.; Yu, J. T.; Cheng, J. Chem. Commun. 2015, 51, 5085.
      (j) Sashidhara, K. V.; Palnati, G. R.; Singh, L. R.; Upadhyay, A.; Avula, S. R.; Kumar, A.; Kant, R. Green Chem. 2015, 17, 3766.
      (k) Xiang, L. K.; Niu, Y. N.; Pang, X. B.; Yang, X. D.; Yan, R. L. Chem. Commun. 2015, 51, 6598.
      (l) Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.
      (m) Wang, D.; Zhang, R.; Lin, S.; Deng, R.; Yan, Z. Chin. J. Org. Chem. 2016, 36, 2757(in Chinese).
      (王丁意, 张荣兴, 林森, 邓瑞华, 严兆华, 有机化学, 2016, 36, 2757.)
      (n) Hu, F.; Gao, W.; Chang, H.; Li, X.; Wei, W. Chin. J. Org. Chem. 2015, 35, 1848(in Chinese).
      (胡飞, 高文超, 常宏宏, 李兴, 魏文珑, 有机化学, 2015, 35, 1848.)

    14. [14]

      Yang, F. L.; Tian, S. K. Angew. Chem., Int. Ed. 2013, 52, 4929.  doi: 10.1002/anie.v52.18

    15. [15]

      Londregan, A. T.; Burford, K.; Conn, E. L.; Hesp, K. D. Org. Lett. 2014, 16, 3336.  doi: 10.1021/ol501359r

    16. [16]

      Myers, A. G.; Zheng, B.; and Movassaghi, M. J. Org. Chem. 1997, 62, 7507.  doi: 10.1021/jo9710137

    17. [17]

      Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2016, 18, 4144.  doi: 10.1021/acs.orglett.6b02289

    18. [18]

      Su, Y.; Zhou, X.; He, C.; Zhang, W.; Ling, X.; Xiao, X. J. Org. Chem. 2016, 81, 4981.  doi: 10.1021/acs.joc.6b00475

  • 加载中
    1. [1]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    2. [2]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    3. [3]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    4. [4]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    5. [5]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    6. [6]

      Chen-Chang CuiShao-Qing ShiLu-Yao WangFeng LinMan-Su TuWen-Juan HaoBo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541

    7. [7]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    8. [8]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    9. [9]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    10. [10]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    11. [11]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    12. [12]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    13. [13]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    14. [14]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    15. [15]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    16. [16]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    17. [17]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    18. [18]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    19. [19]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    20. [20]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

Metrics
  • PDF Downloads(15)
  • Abstract views(2601)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return