Citation: Lin Danyan, Song Senchuan, Chen Zhiyong, Guo Pengran, Chen Jianghan, Shi Huahong, Mai Yuliang, Song Huacan. Luminescence Properties of the Conjugated System Containing Benzoimidazole Structural Units and Its Organic Light-Emitting Diode (OLED)[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 103-111. doi: 10.6023/cjoc201709047 shu

Luminescence Properties of the Conjugated System Containing Benzoimidazole Structural Units and Its Organic Light-Emitting Diode (OLED)

  • Corresponding author: Song Huacan, songhc2007@163.com
  • Received Date: 29 September 2017
    Revised Date: 6 October 2017
    Available Online: 21 January 2017

    Fund Project: the Special Project of Science and Technology Development of Guangdong Academy of Sciences 2017GDASCX-0104the Science and Technology Planning Project of Guangdong Province 2017A070702017the Science and Technology Planning Project of Guangdong Province 2017A040405040Project supported by the Science and Technology Planning Project of Guangdong Province (Nos. 2017A070702017, 2017A040405040) and the Special Project of Science and Technology Development of Guangdong Academy of Sciences (No. 2017GDASCX-0104)

Figures(7)

  • A series of conjugated compounds containing imidazole structure units were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS and elemental analysis. Their UV absorption wavelength (λa), fluorescence emission wavelength (λe), fluorescence quantum yield (Φ) and fluorescence lifetime (τ) were determined, and the relationships between the molecular structures and its spectral data were discussed. The results showed that these compounds possess strong luminescence characteristic, and the maximum value of Φ is 91%. 1, 4-Bis-(2-(1-benzylbenzimidazole))benzene (5b) was selected to fabricate organic light-emitting diode (OLED). Its main luminous peak is at 448 nm, the maximum brightness is 6790 cd•m-2 when the voltage is 23.8 V (875 mA•cm-2), the maximum current efficiency is 1.17 cd•A-1, the maximum power efficiency is 0.96 lm•W-1, and the maximum external quantum efficiency is 0.92%, which indicate that these compounds have great potential application value as OLED materials.
  • 加载中
    1. [1]

      Chen, Z.; Liu, X.-K.; Zheng, C.-J.; Ye, J.; Liu, C.-L.; Li, F.; Ou, X.-M.; Lee, C.-S.; Zhang, X.-H. Chem. Mater. 2015, 27, 5206.  doi: 10.1021/acs.chemmater.5b01188

    2. [2]

      Shao, J.-Y.; Yao, J.-N.; Zhong, Y.-W. Organometallics 2012, 31, 4302.  doi: 10.1021/om300288h

    3. [3]

      Oksana, T.; Nicolas, M.; Chiara, B. J. Mater. Chem. C 2016, 4, 5940.  doi: 10.1039/C6TC01651K

    4. [4]

      Peng, H.-D.; Wang, J.-Y.; Liu, Z.-H.; Pan, G.-B. Chem. Phys. Lett. 2016, 651, 133.  doi: 10.1016/j.cplett.2016.03.048

    5. [5]

      Li, R.-H.; Xiao, S.-H.; Li, Y.; Lin, Q.-F.; Zhang, R.-H.; Zhao, J.; Yang, C.-Y.; Zou, K.; Li, D.-S.; Yi, T. Chem. Sci. 2014, 5, 3922.  doi: 10.1039/C4SC01243G

    6. [6]

      Kumar, D.; Thomas, K. R. J. J. Photochem. Photobiol. A:Chem. 2011, 218, 162.  doi: 10.1016/j.jphotochem.2010.12.018

    7. [7]

      Yan, Y.-N.; Lin, D.-Y.; Pan, W.-L.; Li, X.-L.; Wan, Y.-Q.; Mai, Y.-L.; Song, H.-C. Spectrochim. Acta, Part A 2009, 74, 233.  doi: 10.1016/j.saa.2009.06.020

    8. [8]

      Dayan, O.; Yunusinan, M. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2015, 45, 1018.  doi: 10.1080/15533174.2013.862655

    9. [9]

    10. [10]

      Yu, Q.-Y.; Lei, B.-X.; Liu, J.-M.; Shen, Y.; Xiao, L.-M.; Qiu, R.-L.; Kuang, D.-B.; Su, C.-Y. Inorg. Chim. Acta 2012, 392, 388.  doi: 10.1016/j.ica.2012.03.047

    11. [11]

      Murugan, P.; Hwang, K. C. Int. J. ChemTech Res. 2014, 6, 3518.

    12. [12]

      Gao, Z.-Q.; Lee, C.-S.; Bello, I.; Lee, S. T.; Chen, R.-M.; Luh, T.-Y.; Shi, J.; Tang, C.-W. Appl. Phys. Lett. 1999, 74, 865.  doi: 10.1063/1.123392

    13. [13]

      Gostev, F. E.; Kol'tsova, L. S.; Petrukhin, A. N.; Titov, A. A.; Shiyonok, A. I.; Zaichenko, N. L.; Marevtsev, V. S.; Sarkisov, O. J. Photochem. Photobiol. A:Chem. 2003, 156, 1.

    14. [14]

      Park, S.; Kwon, O.-H.; Kim, S.; Park, S.; Choi, M.-G.; Cha, M.; Park, S. Y.; Jang, D.-J. J. Am. Chem. Soc. 2005, 127, 10070.  doi: 10.1021/ja0508727

    15. [15]

      Lu, W.-F.; Yu, X.-H. Insul. Mater. Commun. 2000, 5, 5(in Chinese).
       

    16. [16]

      Bilge, E.; Arslan, U. Spectrochim. Acta, Part A 2013, 103, 222.  doi: 10.1016/j.saa.2012.10.055

    17. [17]

      Xie, Q.; Liu, S.-G.; Li, X.-L.; Wu, Q.; Luo, Z.-D.; Fu, Xi.-Y.; Cao, W. Q.; Lan, G.-Q.; Li, D.; Zheng, W.-J.; Chen, T.-F. Dalton Trans. 2014, 43, 6973.  doi: 10.1039/C4DT00198B

    18. [18]

      Tmur, G.; Andre, F.; Teulon J.-M.; Daniel, P.; Michele, C.; Alix, C. J. Med. Chem. 1992, 35, 4455.  doi: 10.1021/jm00101a024

    19. [19]

      Meng, J.-P.; Lu, Y.-H.; Halqam, I.; Zou, C.-H. Chin. J. Biochem. Pharm. 2008, 29, 418(in Chinese).
       

    20. [20]

      Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P. A.; Sato, H.; Mori, I.; West, R. I.; Shibahara, M.; Toyoda, H.; Wang, L.; Nolte, R. T.; Veal, J. M.; Cheung, M. J Med. Chem. 2007, 50, 4453.  doi: 10.1021/jm0611051

    21. [21]

      Xu, J.-Y.; Zhang, L.; Wei, Z.; Hua, W.-Y.; Wu, X.-M.; Wang, Q.-J.; Zhang, J. J. Chin. Pharm. Univ. 2005, 36, 296(in Chinese).
       

    22. [22]

      Bilge, E.; Yunus, B. Quim. Nova 2014, 37, 643.

    23. [23]

      Kozaki, M.; Isoyama, A.; Kogen, A. A.; Okada, K. Org. Lett. 2005, 7, 115.  doi: 10.1021/ol0476927

    24. [24]

      Krebs, F. C.; Spanggaard, H. J. Org. Chem. 2002, 67, 7185.  doi: 10.1021/jo025592d

    25. [25]

      Varma, R. S. Green Chem. 1999, 1, 43  doi: 10.1039/a808223e

    26. [26]

      Yan, Y.-N.; Pan, W.-L.; Song, H.-C. Dyes Pigm. 2010, 86, 249.  doi: 10.1016/j.dyepig.2010.01.011

    27. [27]

      Pan, W.-L.; Tan, H.-B.; Chen, Y.; Mu, D.-H.; Liu, H.-B.; Wan, Y.-Q.; Song, H.-C. Dyes Pigm. 2008, 76, 17.  doi: 10.1016/j.dyepig.2006.07.034

    28. [28]

      Song, S.-C.; Chen, J.-H.; Pan, W.-L.; Song, H.-C.; Shi, H.-H.; Mai, Y.-L.; Wen, W. Spectrochim. Acta, Part A 2017, 170, 157.  doi: 10.1016/j.saa.2016.07.008

    29. [29]

    30. [30]

      Yang, L.; Chang, G.-J.; Zhang, L. Guangdong Chem. Ind. 2013, 40, 23(in Chinese).
       

    31. [31]

      Tandon, S. S.; Thompson, K. L.; Bridson, N. J.; Dewan, C. J. Inorg. Chem. 1994, 33, 54.  doi: 10.1021/ic00079a011

    32. [32]

      ChemBioDraw Ultra 11.0. PerkinElmer, Waltham, MA, USA, 2013. Available online:http://www.cambridgesoft.com (accessed on 21 November 2013).

    33. [33]

      Yu, Q.-Y.; Lei, B.-X.; Liu, J.-M.; Shen, Y.; Xiao, L.-M.; Qiu, R.-L.; Kuang, D.-B.; Su, C.-Y. Inorg. Chim. Acta 2012, 392, 388.  doi: 10.1016/j.ica.2012.03.047

    34. [34]

      Feng, G.-J.; Wang, Y.; Guo, T.-T. Acta Metrol. Sin. 2009, 30, 1(in Chinese).  doi: 10.3969/j.issn.1000-1158.2009.z1.01

    35. [35]

      Hu, L.-H.; Huang, Z.-B.; Ji, S.-J.; Zhu, J. Anal. Instrum. 2011, 5, 55(in Chinese).  doi: 10.3969/j.issn.1001-232X.2011.05.014

    36. [36]

      Zhang, X.-Q.; Chi, Z.-G.; Xu, B.-J.; Li, H.-Y.; Yang, Z.-Y.; Li, X.-F.; Liu, S.-W.; Zhang, Y.; Xu, J.-R. Dyes Pigm. 2011, 89, 56.  doi: 10.1016/j.dyepig.2010.09.003

    37. [37]

      Huang, J.-H.; Su, J.-H.; Li, X; Lam, M. K.; Fung, K. M.; Fan, H.-H.; Cheah, K. W.; Chen, C.-H.; Tai, H. J. Mater. Chem. 2011, 21, 2957.  doi: 10.1039/c0jm03300f

    38. [38]

      Tang, S.; Li, W.-J.; Shen, F.-Z.; Liu, D.-D.; Yang, B.; Ma, Y.-G. J. Mater. Chem. 2012, 22, 4401.  doi: 10.1039/C1JM14639D

    39. [39]

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    20. [20]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

Metrics
  • PDF Downloads(11)
  • Abstract views(2956)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return