Citation: Li Qinghan, Shao Xuebei, Zhang Gang, Ding Yong, Yang Xuejun, Chen Feng. Recent Advance of Palladium-Catalyzed Cross-Coupling Reactions of Organoalanes with Electrophiles Reagents[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 802-811. doi: 10.6023/cjoc201709041 shu

Recent Advance of Palladium-Catalyzed Cross-Coupling Reactions of Organoalanes with Electrophiles Reagents

  • Corresponding author: Li Qinghan, lqhchem@163.com
  • Received Date: 25 June 2017
    Revised Date: 23 October 2017
    Available Online: 15 April 2017

    Fund Project: Project supported by the Sichuan Provincial Department of Science and Technology (No. 2015NZ0033)the Sichuan Provincial Department of Science and Technology 2015NZ0033

Figures(9)

  • Organoaluminum compounds are excellent nucleophiles for organic reactions because of their high reactivities, the high Lewis acidity of the aluminum center, and their low toxicities. Therefore, organoalanes are widely applied in cross-coupling reactions. In this paper, recent research results about the organoaluminum reagents applied in cross-coupling reactions catalyzed by palladium are reviewed, involving various reaction systems.
  • 加载中
    1. [1]

      (a) Tucker. C. E. ; Vries, de J. G. Top. Catal. 2002, 19, 111.
      (b) Nicolaou, K. C. ; Bulger, P. G. ; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
      (c) Johnson, J. B. ; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840.
      (d) Torborg, C. ; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.
      (e) Wu, X. -F. ; Anbarasan, P. ; Neumann, H. ; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9047.
      (f) Li, H. -B. ; Johansson Seechurn, C. C. C. ; Colacot, T. J. ACS Catal. 2012, 2, 1147.
      (g) Sun, F. -Y. ; Lv, L. -L. ; Huang, M. ; Zhou, Z. -H. ; Fang, X. -D. Org. Lett. 2014, 16, 5024.
      (h) Greco, R. ; Goessler, W. ; Cantillo, D. ; Kappe, C. O. ACS Catal. 2015, 5, 1303.
      (i) Ruiz-Castillo, P. ; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
      (j) Jedinák, L. ; Zátopková, R. ; Zemánková, H. ; Šustková, A. ; Cankař, P. J. Org. Chem. 2017, 82, 157.
      (k) Liu, C. -W. ; Liu, Y. -M. ; Liu, R. -Z. ; Lalancette, R. ; Szostak, R. ; Szostak, M. Org. Lett. 2017, 19, 1434.
      (l) Halima, T. B. ; Vandavasi, J. K. ; Shkoor, M. ; Newman, S. G. ACS Catal. 2017, 7, 2176.

    2. [2]

      (a) Yu, D. -G. ; Shi, Z. -J. Angew. Chem., Int. Ed. 2011, 50, 7079.
      (b) Hirner, J. J. ; Blum, S. A. Organometallics 2011, 30, 1299.
      (c) Greene, M. A. ; Yonova, I. M. ; Williams, F. J. ; Jarvo, E. R. Org. Lett. 2012, 14, 4293.
      (d) Zhang, X. -Q. ; Wang, Z. -X. Synlett 2013, 24, 2081.
      (e) Everson, D. A. ; Buonomo, J. A. ; Weix, D. J. Synlett 2014, 25, 233.
      (f) Li, Q. -H. ; Ding, Y. ; Yang, X. J. Chin. Chem. Lett. 2014, 25, 1296.
      (g) Magano, J. ; Monfette, S. ACS Catal. 2015, 5, 3120.
      (h) Tarui, A. ; Shinohara, S. ; Sato, K. ; Omote, M. ; Ando, A. Org. Lett. 2016, 18, 1128.
      (i) Li, Q. -H. ; Ding, Y. ; Zhang, G. ; Zhang, Z. ; Mo, S. Chin. J. Org. Chem. 2016, 36, 83(in Chinese).
      (李清寒, 丁勇, 张刚, 张震, 莫松, 有机化学, 2016, 36, 83.)
      (j) Matsubara, K. ; Yamamoto, H. ; Miyazaki, S. ; Inatomi, T. ; Nonaka, K. ; Koga, Y. ; Yamada, Y. ; Veiros, L. F. ; Kirchner, K. Organometallics 2017, 36, 255.

    3. [3]

      (a) Kang, S. -K. ; Yamaguchi, T. ; Kim, T. -H. ; Ho, P. -S. J. Org. Chem. 1996, 61, 9082.
      (b) Mao, Z. -F. ; Wang, Z. ; Xu, Z. -Q. ; Huang, F. ; Yu, Z. -K. ; Wang, R. Org. Lett. 2012, 14, 3854.
      (c) Hornillos, V. ; Pérez, M. ; Fañ anás-Mastral, M. ; Feringa, B. L. J. Am. Chem. Soc. 2013, 135, 2140.
      (d) Santandrea, J. ; Bédard, A. C. ; Collins, S. K. Org. Lett. 2014, 16, 3892.
      (e) Anima Bose, A. ; Mal, P. J. Org. Chem. 2015, 80, 11219.
      (f) Ding, S. -Y. ; Xu, L. ; Li, P. -F. ACS Catal. 2016, 6, 1329.
      (g) Singh, S. K. ; Chandna, N. ; Jain, N. Org. Lett. 2017, 19, 1322.
      (h) Sahoo, H. ; Mukherjee, S. ; Grandhi, G. S. ; Selvakumar, J. ; Baidya, M. J. Org. Chem. 2017, 82, 2764.
      (i) Li, Q. -H. ; Ding, Y. ; Zhang, G. ; Zhang, Z. ; Mo, S. Curr. Org. Synth. 2017, 14, 462.

    4. [4]

      (a) Baba, S. ; Negishi, E. -I. J. Am. Chem. Soc. 1976, 98, 6729.
      (b) Negishi, E-i. ; Baba, S. J. Chem. Soc., Chem Commun. 1976, 596.

    5. [5]

      (a) Negishi, E-i. ; Zeng, X. ; Tan, Z. ; Qian, M. ; Hu, Q. ; Huang, Z. In Metal-catalyzed Cross-Coupling Reactions, Eds. : de Meijere, A. ; Diederich, F., Vol. 2, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
      (b) Haas, D. ; Hammann, J. M. ; Greiner, R. ; Knochel, P. ACS Catal. 2016, 6, 1540.

    6. [6]

      (a) Andrus, M. B. ; Meredith, E. L. ; Hicken, E. J. ; Simmons, B. L. ; Glancey, R. R. ; Ma, W. J. Org. Chem. 2003, 68, 8162.
      (b) Liu, B. ; Zhou, W. -S. Org. Lett. 2004, 6, 71.
      (c) Elkhayat, Z. ; Safir, I. ; Dakir, M. ; Arseniyadis, S. Tetrahedron Asymmetry 2007, 18, 1589.
      (d) Chanu, A. ; Safir, I. ; Basak, R. ; Chiaroni, A. ; Arseniyadis, S. Org. Lett. 2007, 9, 1351.

    7. [7]

      Woodward, S. ; Dagorne, S. Topics in Organometallic Chemistry, Vol. 41, Springer, Berlin, 2013, pp. 1~322. For the synthesis of organoaluminum compounds, see pp. 173~186, in the chapter on Preparation of organoalanes for organic synthesis, by Knochel, P. ; Blîmke, T. ; Groll, K. ; Chen, Y. -H. ; For cross-coupling reactions of organoaluminum compounds, see pp. 267~276, in chapter on Organoaluminum couplings to carbonyls, imines, and halides, by Kolb, A. ; Zezschwitz, P.

    8. [8]

      Hallwachs, W.; Schafarik, A. Justus Liebigs Ann. Chem. 1859, 109, 206.  doi: 10.1002/(ISSN)1099-0690

    9. [9]

      Maruoka, K.; Yamamoto, H. Tetrahedron 1988, 44, 5001.  doi: 10.1016/S0040-4020(01)86007-5

    10. [10]

      Wang, C.; Xi, Z. Chem. Soc. Rev. 2007, 36, 1395.  doi: 10.1039/b608694m

    11. [11]

      Uhl, W. Coord. Chem. Rev. 2008, 252, 1540.  doi: 10.1016/j.ccr.2008.01.026

    12. [12]

      (a) Mo, S. ; Shao, X. -B. ; Zhang, G. ; Li, Q. -H. RSC Adv. 2017, 7, 27248.
      (b) Zhang, Z. ; Shao, X. -B. ; Zhang, G. ; Li, Q. -H. ; Li, X. -Y. Synthesis 2017, 49, 3643.
      (c) Zhang, Z. ; Mo, S. ; Zhang, G. ; Shao, X. -B. ; Li, Q. -H. ; Zhong, Y. Synlett 2017, 28, 611.

    13. [13]

      Blîmke, T.; Chen, Y. H.; Peng, Z.; Knochel, P. Nat. Chem. 2010, 2, 313.  doi: 10.1038/nchem.590

    14. [14]

      (a) Ohta, A. ; Inoue, A. ; Watanabe, T. Heterocycles 1984, 22, 2317.
      (b) Ohta, A. ; Inoue, A. ; Ohtsuka, K. ; Watanabe, T. Heterocycles 1985, 23, 133.

    15. [15]

      Hirota, K.; Isobe, Y.; Maki, Y. J. Chem. Soc., Perkin Trans. 1 1989, 2513.
       

    16. [16]

      Crisp, G. T.; Papadopoulos, S. Aust. J. Chem. 1989, 42, 279.  doi: 10.1071/CH9890279

    17. [17]

      Hirota, K.; Kitade, Y.; Kanbe, Y.; Maki, Y. J. Org. Chem. 1992, 57, 5268.  doi: 10.1021/jo00045a051

    18. [18]

      Mangalagiu, I.; Benneche, T.; Undheim, K. Tetrahedron Lett. 1996, 37, 1309.  doi: 10.1016/0040-4039(95)02381-X

    19. [19]

      Blum, J.; Gelman, D.; Baidossi, W.; Shakh, E.; Rosenfeld, A.; Aizenshtat, Z.; Wassermann, B. C.; Frick, M.; Heymer, B.; Schutte, S.; Wernik, S.; Herbert, S. H. J. Org. Chem. 1997, 62, 8681.  doi: 10.1021/jo970822n

    20. [20]

      Biswas, K.; Chapron, A.; Cooper, T.; Fraser, P. K, Novak, A.; Prieto, O.; Woodward, S. Pure Appl. Chem. 2006, 78, 511.  doi: 10.1351/pac200678020511

    21. [21]

      Vinogradov, A.; Woodward, S. Org. Synth. 2010, 87, 104.  doi: 10.15227/orgsyn.087.0104

    22. [22]

      Cooper, T.; Novak, A.; Humphreys, L. D.; Walker, M. D.; Woodward, S. Adv. Synth. Catal. 2006, 348, 686.  doi: 10.1002/(ISSN)1615-4169

    23. [23]

      Conte, V.; Fiorani, G.; Floris, B.; Galloni, P.; Woodward, S. Appl. Catal. A:Gen. 2010, 381, 161.  doi: 10.1016/j.apcata.2010.04.005

    24. [24]

      Baba, S.; Negishi, E.-I. J. Am. Chem. Soc. 1976, 98, 6729.  doi: 10.1021/ja00437a067

    25. [25]

      Negishi, E-i.; Baba, S. J. Chem. Soc., Chem. Commun. 1976, 596.
       

    26. [26]

      Negishi, E.-I.; Okukado, N.; King, A. O.; Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 2254.  doi: 10.1021/ja00475a059

    27. [27]

      Zeng, F.; Negishi, E.-I. Org. Lett. 2001, 3, 719.  doi: 10.1021/ol000384y

    28. [28]

      Qian, M.; Huang, Z.; Negishi, E.-I. Org. Lett. 2004, 6, 1531.  doi: 10.1021/ol049716f

    29. [29]

      Chen, Q.-Y.; He, Y.-B. Chin. J. Chem. 1990, 8, 451.  doi: 10.1002/cjoc.v8.5

    30. [30]

      Zweifel, G. ; Miller, R. L. Organic Reactions, Vol. 32, John Wileys, New York, 1984, p. 375.

    31. [31]

      Samaritani, S.; Signore, G.; Malanga, C.; Menicagli, R. Tetrahedron 2005, 61, 14475.
       

    32. [32]

      Andrews, P.; Latham, C. M.; Magre, M.; Willcox, D.; Woodward, S. Chem. Commun. 2013, 49, 1488.  doi: 10.1039/c2cc37537k

    33. [33]

      Fang, H.; Yang, Z.-Y.; Zhang, L.-J.; Wang, W.; Li, Y.-M.; Xu, X.-L.; Zhou, S.-L. Org. Lett. 2016, 18, 6022.  doi: 10.1021/acs.orglett.6b02933

    34. [34]

      Feuvrie, C.; Blanchet, J.; Bonin, M.; Micouin, L. Org. Lett. 2004, 6, 2333.  doi: 10.1021/ol049346v

    35. [35]

      Wang, B.; Bonin, M.; Micouin, L. Org. Lett. 2004, 6, 3481.  doi: 10.1021/ol048741i

    36. [36]

      Ku, S.-L.; Hui, X.-P.; Chen, C.-A.; Kuo, Y.-Y.; Gau, H.-M. Chem Commun. 2007, 3847.
       

    37. [37]

      Shu, W.-T.; Zhou, S.-L.; Gau, H.-M. Synthesis 2009, 4075.
       

    38. [38]

      Gao, H. J.; Knochel, P. Synlett 2009, 1321.
       

    39. [39]

      Blümke, T.; Chen, Y.-H. Peng, Z.; Knochel, P. Nat. Chem. 2010, 2, 313.  doi: 10.1038/nchem.590

    40. [40]

      Groll, K.; Blümke, T. D.; Unsinn, A.; Haas, D.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 11157.  doi: 10.1002/anie.201205987

    41. [41]

      Chen, X.; Zhou, L.-M.; Li, Y.-M.; Xie, T.; Zhou, S.-L. J. Org. Chem. 2014, 79, 230.  doi: 10.1021/jo4024123

    42. [42]

      (a) Nečas, D. ; Kotora, M. ; Císařová, I. Eur. J. Org. Chem. 2004, 6, 1280.
      (b) Nečas, D. ; Drabina, P. ; Sedlák, M. ; Kotora, M. Tetrahedron Lett. 2007, 48, 4539.
      (c) Kawamura, S. ; Ishizuka, K. ; Takaya, H. ; Nakamura, M. Chem. Commun. 2010, 46, 6054.
      (d) Kawamura, S. ; Kawabata, T. ; Ishizuka, K. ; Nakamura, M. Chem. Commun. 2012, 48, 9376.

    43. [43]

      (a) Wunderlich, S. H. ; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 1501.
      (b) Blümke, T. D. ; Groll, K. ; Karaghiosoff, K. ; Knochel, P. Org Lett. 2011, 13, 6440.
      (c) Zhou, S. -L. ; Yang, Z. -Y. ; Chen, X. ; Li, Y. -M. ; Zhang, L. -J. ; Fang, H. ; Wang, W. ; Zhu, X. -C. ; Wang, S. W. J. Org. Chem. 2015, 80, 6323.
      (d) Shrestha, B. ; Thapa, S. ; Gurung, S. K. ; Pike, R. A. S. ; Giri, R. J. Org. Chem. 2016, 81, 787.

    44. [44]

      (a) Biradar, D. B. ; Gau, H. -M. Chem. Commun. 2011, 47, 10467.
      (b) Biradar, D. B. ; Gau, H. -M. Org. Biomol. Chem. 2012, 10, 4243.
      (c) He, F. ; Wang, Z. -X. Tetrahedron 2017, 73, 4450.
      (d) Mo, S. ; Shao, X. -B. ; Zhang, G. ; Li, Q. -H. RSC Adv. 2017, 7, 27243.

  • 加载中
    1. [1]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(21)
  • Abstract views(2735)
  • HTML views(988)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return