Citation: Jing Lia, Jin Huia, Guan Meib, Wu Xiaohuaa, Wang Qiantaoa, Wu Yonga. Metal-Free Oxidation of Thiols by N-Fluorobenzenesulfonimide: A Rapid and Efficient Method to Synthesize Disulfides[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 692-697. doi: 10.6023/cjoc201709039 shu

Metal-Free Oxidation of Thiols by N-Fluorobenzenesulfonimide: A Rapid and Efficient Method to Synthesize Disulfides

  • Corresponding author: Wang Qiantaoa, qwang@scu.edu.cn Wu Yonga, wyong@scu.edu.cn
  • The authors contributed equally to this work
  • Received Date: 22 September 2017
    Revised Date: 30 October 2017
    Available Online: 15 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 81373259, 81573286)the National Natural Science Foundation of China 81573286the National Natural Science Foundation of China 81373259

Figures(2)

  • A simple and rapid method is developed for the oxidation of thiols to the corresponding disulfides using N-fluorobenzenesulfonimide (NFSI) as the oxidant without any contamination by over oxidation. The synthetic protocol for disulfide bond formation proceeded efficiently under external base-and metal-free conditions with the advantages of simple operation, mild reaction conditions as well as short reaction times.
  • 加载中
    1. [1]

      (a) Kanda, Y. ; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451.
      (b) Schmidt, B. ; Lindman, S. ; Tong, W. ; Lindeberg, G. ; Gogoll, A. ; Lai, Z. ; Thornwall, M. ; Synnergren, B. ; Nilsson, A. ; Welch, C. J. ; Sohtell, M. ; Westerlund, C. ; Nyberg, F. ; Karlen, A. ; Hallberg, A. J. Med. Chem. 1997, 40, 903.
      (c) Tam-Chang, S. W. ; Stehouwer, J. S. ; Hao, J. J. Org. Chem. 1999, 64 334.

    2. [2]

      (a) Wu, L. F. ; Meng, J. ; Shen, Q. ; Zhang, Y. ; Pan, S. ; Chen, Z. ; Zhu, L. -Q. ; Lu, Y. ; Huang, Y. ; Zhang, G. Nat. Commun. 2017, 8, 15904.
      (b) Peters, S. T. ; Bowen, M. T. ; Bohrer, K. ; McGregor, I. S. ; Neumann, I. D. Addict. Biol. 2017, 22, 702.
      (c) Ullian, M. E. ; Beck, C. N. ; Walker, L. P. Am. J. Hypertens. 2009, 22, 221.
      (d) Pena, A. ; Murat, B. ; Trueba, M. ; Ventura, M. A. ; Wo, N. C. ; Szeto, H. H. ; Cheng, L. L. ; Stoev, S. ; Guillon, G. ; Manning, M. J. Med. Chem. 2007, 50, 835.
      (e) Anoop, A. ; Ranganathan, S. ; Dhaked, B. D. ; Jha, N. N. ; Pratihar, S. ; Ghosh, S. ; Sahay, S. ; Kumar, S. ; Das, S. ; Kombrabail, M. ; Agarwal, K. ; Jacob, R. S. ; Singru, P. ; Bhaumik, P. ; Padinhateeri, R. ; Kumar, A. ; Maji, S. K. J. Biol. Chem. 2014, 289, 16884.

    3. [3]

      (a) Ge, W. L. ; Wei, Y. Y. Green Chem. 2012, 14, 2066.
      (b) Sang, P. ; Chen, Z. K. ; Zou, J. W. ; Zhang, Y. H. Green Chem. 2013, 15, 2096.

    4. [4]

      Khanal, H. D.; Kimb, S. H.; Lee, Y. R. RSC Adv. 2016, 6, 58501.  doi: 10.1039/C6RA12393G

    5. [5]

      (a) Yang, Y. X. ; Hou, W. ; Qin, L. H. ; Du, J. J. ; Feng, H. J. ; Zhou, B. ; Li, Y. C. Chem. -Eur. J. 2014, 20, 416.
      (b) Yan, G. B. ; Borah A. J. ; Wang, L. G. Org. Biomol. Chem. 2014, 12, 9557.
      (c) Tran, L. D. ; Popov I. ; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.

    6. [6]

      (a) Xia, X. ; Zou, K. B. ; Li, R. X. ; Zhang, Z. Y. ; Shao, L. L. ; Fang, D. W. ; Xu, X. H. Acta Chim. Sinica 2008, 66, 1749 (in Chinese).
      (夏湘, 邹康兵, 李若信, 张尊英, 邵玲玲, 方大为, 许新华, 化学学报, 2008, 66, 1749. )
      (b) Shi, Q. ; Li, P. H. ; Yan, Z. Y. ; Wang, L. Org. Chem. Front. 2017, 4, 1322.

    7. [7]

      Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 11, 1520.
       

    8. [8]

      Alves, D.; Lara, R. G.; Contreira, M. E.; Radatz, C. S.; Duarte, L. F. B.; Perin, G. Tetrahedron Letters 2012, 53, 3364.  doi: 10.1016/j.tetlet.2012.04.094

    9. [9]

      (a) Yang, L. ; Feng, J. ; Qiao, M. ; Zeng, Q. L. Org. Chem. Front. 2017, DOI: 10.1039/c7qo00766c.
      (b)Zhu,H.;Yu,J.T.;Cheng,J.Chem.Commun.2016,52,11908.

    10. [10]

      (a) Campbell, D. S. J. Appl. Polym. Sci. 1969, 13, 1201.
      (b) Fettes E. M. ; Mark, H. J. Appl. Polym. Sci. 1963, 7, 2239.

    11. [11]

      (a) Hajjami, M. ; Shiri, L. ; Jahanbakhshi, A. Appl. Organomet. Chem. 2015, 29, 668.
      (b) He, Y. ; Huang, D. ; Lu, M. Phosphorus, Sulfur, Silicon Relat. Elem. 2012, 187, 1118.
      (c) Madabhushi, S. ; Jillell, R. ; Sriramoju, V. ; Sing, R. Green Chem. 2014, 16, 3125.
      (d) Hajipour, A. R. ; Mallakpour, S. E. ; Adibi, H. J. Org. Chem. 2002, 67, 8666.
      (e) Deng, S. R. ; Hu, G. Q. ; Yan, Y. ; Guo, J. P. ; Huang, W. G. ; Zhou, Y. H. ; Li, Z. Y. Chin. J. Org. Chem. 2005, 25, 815 (in Chinese).
      (邓仕任, 胡高强, 鄢勇, 郭建平, 黄伟国, 周运鸿, 李早英, 有机化学, 2005, 25, 815. )

    12. [12]

      (a) Corma, A. ; Rodenas, T. ; Sabater, M. J. Chem. Sci. 2012, 3, 398.
      (b) Donck, S. ; Gravel, E. ; Li, A. ; Prakash, P. ; Shah, N. ; Leroy, J. ; Li, H. Y. ; Namboothiri, I. N. N. ; Doris, E. Catal. Sci. Technol. 2015, 5, 4542.
      (c) Menini, L. ; Pereira, M. C. ; Ferreira, A. C. ; Fabris, J. D. ; Gusevskaya, E. V. Appl. Catal. A: Gen. 2011, 392, 151.
      (d) Chauhan, D. ; Kumar, P. ; Joshi, C. ; Labhsetwar, N. ; Ganguly, S. K. ; Jain, S. L. New J. Chem. 2015, 39, 6193.
      (e) Dhakshinamoorthy, A. ; Primo, A. ; Esteve-Adell, I. ; Alvaro, M. ; Garcia, H. ChemCatChem 2015, 7, 776.
      (f) Patra, A. K. ; Dutta, A. ; Pramanik, M. ; Nandi, M. ; Uyama, H. ; Bhaumik, A. ChemCatChem 2014, 6, 220.

    13. [13]

      (a) Kumar, P. ; Singh, G. ; Tripathi, D. ; Jain, S. L. RSC Adv. 2014, 4, 50331.
      (b) Talla, A. ; Driessen, B. ; Straathof, N. J. W. ; Milroy, L. G. ; Brunsveld, L. ; Hessel, V. ; Noel, T. Adv. Synth. Catal. 2015, 357, 2180.
      (c) Dou, Y. C. ; Huang, X. ; Wang, H. ; Yang, L. T. ; Li, H. ; Yuan, B. X. ; Yang, G. Y. Green Chem. 2017, 19, 2491.
      (d) Oba, M. ; Tanaka, K. ; Nishiyama, K. ; Ando, W. J. Org. Chem. 2011, 76, 4173.

    14. [14]

      (a) Sharma, S. ; Barooah, N. ; Baruah, J. B. J. Mol. Catal. A: Chem. 2005, 229, 171.
      (b) Nair, V. ; Augustine, A. Org. Lett. 2003, 5, 543.
      (c) Yi, S. L. ; Li, M. C. ; Hu X. Q. ; Mo, W. M. ; Shen, Z. L. Chin. Chem. Lett. 2016, 27, 1505.

    15. [15]

      (a) Natarajan, P. ; Sharma, H. ; Kaur, M. ; Sharma, P. Tetrahedron Lett. 2015, 56, 5578.
      (b) Hashemi, M. ; Ghafuri, H. ; Karimi-Jaberi, Z. J. Sulfur Chem. 2006, 27, 165.
      (c) Huang, X. Y. ; Wang, T. ; Xiao, C. Q. ; Yu, X. Q. ; Xie, R. G. Chin. J. Org. Chem. 2004, 24, 1629 (in Chinese).
      (黄小毅, 王涛, 夏传琴, 余孝其, 谢如刚, 有机化学, 2004, 24, 1629. )

    16. [16]

      (a) Bagi, N. ; Kaizer, J. ; Speier, G. RSC Adv. 2015, 5, 45983.
      (b) Vilaivan, T. T., T. ; Poochampa, K. ; Vilaivan, T. ; Sukwattanasinitt, M. ; Wacharasindhu, S. Tetrahedron 2016, 72, 788.
      (c) Thurow, S. ; Pereira, V. A. ; Martinez, D. M. ; Alves, D. ; Perin, G. ; Jacob, R. G. ; Lenardao, E. J. Tetrahedron Lett. 2011, 52, 640.
      (d) Shard, A. ; Kumar, R. ; Saima; Sharma, N. ; Sinha, A. K. RSC Adv. 2014, 4, 33399.
      (e) Zhu, R. H. ; Shi, X. X. Synth. Commun. 2012, 42, 1108.
      (f) Banfield, S. C. ; Omori, A. T. ; Leisch, H. ; Hudlicky, T. J. Org. Chem. 2007, 72, 4989.
      (g) Abbasi, M. ; Sabet, A. J. Organomet. Chem. 2017, 833, 10.
      (h) Wang, G. ; Guo, Y. ; Lv, Y. ; Wang, X. C. ; Quan, Z. J. Chin. J. Org. Chem. 2016, 36, 1375 (in Chinese).
      (王刚, 郭燕, 吕颖, 王喜存, 权正军, 有机化学, 2016, 36, 1375. )
      (i) Jiang, H. ; Zhong, M. N. ; Chen, J. S. Chin. J. Org. Chem. 1999, 19, 214 (in Chinese).
      (蒋辉, 钟明鼐, 陈冀胜, 有机化学, 1999, 19, 214. )

    17. [17]

      (a) Rosewall, C. F. ; Sibbald, P. A. ; Liskin, D. V. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
      (b) Sibbald, P. A. ; Michael, F. E. Org. Lett. 2009, 11, 1147.

    18. [18]

      (a) Sun, K. ; Li, Y. ; Xiong, T. ; Zhang, J. P. ; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694.
      (b) Zheng, G. F. ; Li, Y. ; Han, J. J. Nat. Commun. 2015, 6, 7011.

    19. [19]

      (a) Roy, A. ; Schneller, S. W. Org. Lett. 2005, 7, 3889.
      (b) Boger, D. L. ; Brunette, S. R. ; Garbaccio, R. M. J. Org. Chem. 2001, 66, 5163.

    20. [20]

      Foye, W. O.; Speranza, J. J. Pharm. Sci. 1970, 59, 259.  doi: 10.1002/jps.2600590226

    21. [21]

      Yang, Z. H.; Yang, S. Y.; Xu, J. X. Tetrahedron 2017, 73, 3240.  doi: 10.1016/j.tet.2017.04.054

    22. [22]

      Shah, S. T. A.; Khan, K. M.; Fecker, M.; Voelter, W. Tetrahedron Lett. 2003, 44, 6789.  doi: 10.1016/S0040-4039(03)01402-3

    23. [23]

      Johnson, R. N.; Smiles, S. J. Chem. Soc., Trans. 1923, 123, 2384.  doi: 10.1039/CT9232302384

    24. [24]

      Sengar, R. S.; Nemykin, V. N.; Basu, P. New J. Chem. 2003, 27, 1115.  doi: 10.1039/b300048f

    25. [25]

      Minakami, S. ; Kono, M. JP 42002425, 1967 [Chem. Abstr. 1967, 67, 32484m].

    26. [26]

      Ghorbani-Choghamarani, A.; Nikoorazm, M.; Goudarziafshar, H.; Shokr, A.; Almasi, H. J. Chem. Sci. 2011, 123, 453.  doi: 10.1007/s12039-011-0094-3

    27. [27]

      Vandavasi, J. K.; Hu, W. P.; Chen, C. Y.; Wang, J. J. Tetrahedron 2011, 67, 8895.  doi: 10.1016/j.tet.2011.09.071

    28. [28]

      Ghorbani-Choghamarani, A.; Nikoorazm, M.; Azadi, G. J. Serb. Chem. Soc. 2013, 78, 173.  doi: 10.2298/JSC120223054G

    29. [29]

      Chauhan, S. M. S.; Kumar, A.; Srinivas, K. A. Chem. Commun. 2003, 18, 2348.
       

    30. [30]

      Danieli, B.; Sacchetti, A.; Silvani, A.; Pratesi, G.; Zunino, F. J. Org. Chem. 2006, 71, 2848.  doi: 10.1021/jo052677g

    31. [31]

      (a) Merck Index 2001, 13, 2811.
      (b) Data of commercial product (TCI C0519).
      (c) Kirihara, M. ; Asai, Y. ; Ogawa, S. ; Noguchi, T. ; Hatano, A. ; Hirai, Y. Synthesis 2007, 21, 3286.
      (d) Fles, D. ; Markovac-Prpic, A. ; Tomasic, V. J. Am. Chem. Soc. 1958, 80, 4654.

    32. [32]

      Morgan, L. R. US 4827016, 1989 [Chem. Abstr. 1989, 111, 225308m].

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    3. [3]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    4. [4]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    5. [5]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    6. [6]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    7. [7]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    8. [8]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    9. [9]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    10. [10]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    11. [11]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    12. [12]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    13. [13]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    14. [14]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    15. [15]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    16. [16]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    17. [17]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    18. [18]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    19. [19]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    20. [20]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

Metrics
  • PDF Downloads(10)
  • Abstract views(1376)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return