Citation: Wang Hao, Wang Kai, Sun Jie, Fang Guiqian, Yao Qingqiang, Wu Zhongyu. Research Progress of Boronic Acid in Chemsensors[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1035-1051. doi: 10.6023/cjoc201709037 shu

Research Progress of Boronic Acid in Chemsensors

  • Corresponding author: Yao Qingqiang, yao_imm@163.com Wu Zhongyu, u_med@foxmail.com
  • Received Date: 22 September 2017
    Revised Date: 22 December 2017
    Available Online: 3 May 2018

    Fund Project: Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2014YL035)the Shandong Provincial Natural Science Foundation ZR2014YL035

Figures(19)

  • The detection and fluorescent identification of some substances such as sLea/x in vivo can provide important reference for the diagnosis, treatment and prognosis of disease, molecular tracing and further research on the mechanism of related diseases. Therefore, the development and discovery of high selectivity and high sensitivity chemsensors is of great value. Due to the special structure, phenyl boronic acid compounds could interact and bind with sugar, catecholamine containing catechol structure, fluoride or alkali cyanide. So boronic acids could be develeped as fluorescence sensors selectively for related substances, while have the advantages of high selectivity, high efficiency, rapid analysis and so on. In recent years, boronic acid has been functioned with new materials such as nanoparticles and quantum dots to design novel sensors for better performance. In this paper, the recent progress in the study of boronic acid compounds in sensors is reviewed.
  • 加载中
    1. [1]

      Hu, X.; Wang, Y.; Liu, H.; Wang, J.; Tan, Y., Wang, F.; Tan, W. Chem. Sci. 2017, 8, 466.  doi: 10.1039/C6SC03401B

    2. [2]

      Verly, I. R. N.; Kuilenburg, A. B. P. V.; Abeling, N. G. G. M. Eur. J. Cancer 2017, 235.
       

    3. [3]

      Bergenstal, R. M.; Bailey, T. S.; Rodbard, D.; Ziemen, M.; Guo, H.; Muehlen-Bartmer, I.; Ahmann, A. J. Diabetes Care 2017, 40, 554.  doi: 10.2337/dc16-0684

    4. [4]

      Rojas, L. J.; Taracila, M. A.; Papp-Wallace, K. M.; Bethel, C. R.; Caselli, E.; Romagnoli, C.; Bonomo, R. A. Antimicrob. Agents Chemother. 2016, 60, 1751.  doi: 10.1128/AAC.02641-15

    5. [5]

      Whyte, G. F.; Vilar, R.; Woscholski, R. ChemBioChem 2013, 6, 161.
       

    6. [6]

      Nishiyabu, R.; Shimizu, A. Chem. Commun. 2016, 52, 9765.  doi: 10.1039/C6CC02782B

    7. [7]

      Imperio, D.; Del Grosso, E.; Fallarini, S.; Lombardi, G.; Panza, L. Org. Lett. 2017, 19, 1678.  doi: 10.1021/acs.orglett.7b00382

    8. [8]

      Guan, Y.; Zhang, Y. Chem. Soc. Rev. 2013, 42, 8106.  doi: 10.1039/c3cs60152h

    9. [9]

      Wu, X.; Chen, X. X.; Jiang, Y. B. Analyst 2017, 142, 1403.  doi: 10.1039/C7AN00439G

    10. [10]

      Wang, L.; Zhang, J.; Kim, B.; Peng, J.; Berry, S. N.; Ni, Y.; Chang, Y. T. J. Am. Chem. Soc. 2016, 138, 10394.  doi: 10.1021/jacs.6b05810

    11. [11]

      Wu, S.; Guo, H.; Wang, L.; Xin, Y.; Cheng, Y.; Fan, W. Sens. Actuators, B 2017, 245, 11.  doi: 10.1016/j.snb.2017.01.101

    12. [12]

      Tanaka-Okamoto, M.; Mukai, M.; Takahashi, H.; Fujiwara, Y.; Ohue, M.; Miyamoto, Y. Glycobiology 2017, 27, 400.

    13. [13]

      Springsteen, G.; Wang, B. Tetrahedron 2002, 58, 5291.  doi: 10.1016/S0040-4020(02)00489-1

    14. [14]

      Springsteen, G.; Wang, B. Chem. Commun. 2001, 17, 1608.
       

    15. [15]

      James, T. D. ; Shinkai, S. In Host-Guest Chemistry, Vol. 218, Ed. : Penadés, S., Springer-Verlag, Berlin, 2002, p. 159.

    16. [16]

      Zhai, W.; Male, L.; Fossey, J. S. Chem. Commun. 2017, 53, 2218.  doi: 10.1039/C6CC08534B

    17. [17]

      Li, H.; Yang, C.; Zhu, X. Spectrochim. Acta, Part A 2017, 180, 199.  doi: 10.1016/j.saa.2017.03.017

    18. [18]

      Hosseinzadeh, R.; Mohadjerani, M.; Pooryousef, M. Spectrochim. Acta, Part A 2015, 144, 53.  doi: 10.1016/j.saa.2015.02.066

    19. [19]

      Teichert, J. F.; Mazunin, D.; Bode, J. W. J. Am. Chem. Soc. 2013, 135, 113.
       

    20. [20]

      Basiruddin, S. K.; Swain, S. K. Mater. Sci. Eng., C 2016, 58, 103.  doi: 10.1016/j.msec.2015.07.068

    21. [21]

      Solís-Delgado, L. E.; Ochoa-Terán, A.; Yatsimirsky, A. K. Anal. Lett. 2016, 49, 2301.  doi: 10.1080/00032719.2016.1147575

    22. [22]

      Hansen, J. S.; Hoeg, J. T.; Christensen, J. B. Tetrahedron 2017, 73, 3010.  doi: 10.1016/j.tet.2017.04.019

    23. [23]

      Karakuş, E.; Çüncü, M.; Eanes, R. C.; Emrullahoğlu, M. New J. Chem. 2013, 37, 2632.  doi: 10.1039/c3nj00613a

    24. [24]

      Wang, X. K.; Peng, Y.; Tao, H. R.; Zhou, F. F.; Zhang, C.; Su, F.; Xie, W. J. Huazhong Univ. Sci.-Med. 2017, 37, 343(in Chinese).
       

    25. [25]

      Trinchera, M.; Aronica, A.; Dall'Olio, F. Biol. 2017, 6, 16.  doi: 10.3390/biology6010016

    26. [26]

      Chang, M. H.; Chang, C. N. Tetrahedron Lett. 2014, 55, 4437.  doi: 10.1016/j.tetlet.2014.05.112

    27. [27]

      Suazette, R. Sci. China:Chem. 2010, 53, 3.  doi: 10.1007/s11426-010-0021-3

    28. [28]

      Xu, X. D.; Cheng, H.; Chen, W. H.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Sci. Rep. 2013, 3, 2679.  doi: 10.1038/srep02679

    29. [29]

      Chu, Y.; Wang, D.; Wang, K.; Liu, Z. L.; Weston, B.; Wang, B. Bioorg. Med. Chem. Lett. 2013, 23, 6307.  doi: 10.1016/j.bmcl.2013.09.063

    30. [30]

      Varki, A.; Gagneux, P.; Ann, N. Y. Acad. Sci. 2012, 1253, 16.  doi: 10.1111/j.1749-6632.2012.06517.x

    31. [31]

      Dan, W.; Ozhegov, E.; Lin, W.; Zhou, A.; Nie, H.; Yu, L. Glycoconjugate J. 2016, 33, 725.  doi: 10.1007/s10719-016-9664-4

    32. [32]

      Zhang, X.; Chen, B.; He, M.; Zhang, Y.; Peng, L.; Hu, B. Analyst 2016, 141, 1286.  doi: 10.1039/C5AN02402A

    33. [33]

      Matsumoto, A.; Stephenson-Brown, A. J.; Khan, T. Chem. Sci. 2017, 8, 6165.  doi: 10.1039/C7SC01905J

    34. [34]

      Yang, L.; Zhu, S.; Hang, W.; Wu, L.; Yan, X.; Chem, A. Anal. Chem. 2009, 81, 2555.  doi: 10.1021/ac802464a

    35. [35]

      Miyata, K.; Christie, R. J.; Kataoka, K. React. Funct. Polym. 2011, 71, 227.  doi: 10.1016/j.reactfunctpolym.2010.10.009

    36. [36]

      Perdicchio, M.; Ilarregui, J. M.; Verstege, M. I.; Cornelissen, L. A.; Schetters, S. T.; Engels, S.; van Berkel, L. A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3329.  doi: 10.1073/pnas.1507706113

    37. [37]

      Xu, Y.; Sette, A.; Sidney, J.; Gendler, S. J.; Franco, A. Immunol. Cell Biol. 2005, 83, 440.  doi: 10.1111/imcb.2005.83.issue-4

    38. [38]

      Matsumoto, A.; Cabral, H.; Sato, N.; Kataoka, K.; Miyahara, Y. Angew. Chem., Int. Ed. 2010, 49, 5494.  doi: 10.1002/anie.201001220

    39. [39]

      Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Kataoka, K. J. Am. Chem. Soc. 2013, 135, 15501.  doi: 10.1021/ja406406h

    40. [40]

      Zhang, L.; Yu, C.; Gao, R.; Niu, Y. Y.; Li, Y. L.; Chen, J.; He, J. L. Biosens. Bioelectron. 2016, 92, 434.
       

    41. [41]

      Zhang, L.; Yu, C.; Gao, R. Biosens. Bioelectron. 2017, 92, 434.  doi: 10.1016/j.bios.2016.10.083

    42. [42]

      Erickson, J. M.; Messer, T. M.; Scand, J. Plast. Reconstr. Surg. 2013, 38, 1638.
       

    43. [43]

      Richy, F.; Bruyere, O.; Ethgen, O.; Cucherat, M.; Henrotin, Y.; Reginster, J. Y. Arch. Intern. Med. 2003, 163, 1514.  doi: 10.1001/archinte.163.13.1514

    44. [44]

      Wandel, S.; Jüni, P.; Tendal, B.; Nüesch, E.; Villiger, P. M.; Welton, N. J.; Trelle, S. Br. Med. J. 2010, 341, 4675.  doi: 10.1136/bmj.c4675

    45. [45]

      Hwang, J. S.; Kwon, M. Y.; Kim, K. H.; Lee, Y.; Lyoo, I. K.; Kim, J. E.; Han, I. O. J. Biol. Chem. 2017, 292, 1724.  doi: 10.1074/jbc.M116.737940

    46. [46]

      Singh, G.; Alekseeva, L.; Alekseev, V.; Goriachev, D.; Barinov, A.; Nasonov, E.; Pyanykh, S. Ann. Rheum. Dis. 2016, 75, 852.  doi: 10.1136/annrheumdis-2016-eular.4623

    47. [47]

      Reginster, J. Y.; Cooper, C.; Bruyère, O. Curr. Med. Res. Opin. 2016, 32, 1771.  doi: 10.1080/03007995.2016.1239575

    48. [48]

      Kantor, E. D.; Zhang, X.; Wu, K.; Signorello, L. B.; Chan, A. T.; Fuchs, C. S.; Giovannucci, E. L. Int. J. Cancer. 2016, 139, 1949.  doi: 10.1002/ijc.v139.9

    49. [49]

      Saegnipanthkul, S.; Waikakul, S.; Rojanasthien, S.; Totemchokyakarn, K.; Srinkapaibulaya, A.; Chin, T. C.; Lwin, M. Int. J. Rheum. Dis. 2017, 1.

    50. [50]

      Tran, T. M.; Alan, Y.; Glass, T. E. Chem. Commun. 2015, 51, 7915.  doi: 10.1039/C5CC00415B

    51. [51]

      Suk, K. T.; Kim, H. S.; Kim, M. Y.; Kim, J. W.; Uh, Y.; Jang, I. H.; Baik, S. K. J. Korean Med. Sci. 2010, 25, 399.

    52. [52]

      Huey, E. D.; Putnam, K. T.; Grafman, J. Neurology 2006, 66, 17.  doi: 10.1212/01.wnl.0000191304.55196.4d

    53. [53]

      Beck, G. C.; Brinkkoetter, P.; Hanusch, C.; Schulte, J.; van Ackern, K.; van der Woude, F. J.; Yard, B. A. Crit. Care 2004, 8, 485.  doi: 10.1186/cc2879

    54. [54]

      Rye, D. B. Neurology 2004, 63, S2.
       

    55. [55]

      Nagatsu, T. Cell. Mol. Neurobiol. 2017, 1, 535.
       

    56. [56]

      Jenkins, P. O.; Mehta, M. A.; Sharp, D. J. Brain 2016, 139, 2345.  doi: 10.1093/brain/aww128

    57. [57]

      Ali, S. R.; Ma, Y.; Parajuli, R. R.; Balogun, Y.; Lai, W. Y. C.; He, H. Anal. Chem. 2007, 79, 2583.  doi: 10.1021/ac062068o

    58. [58]

      Nikolajsen, R. P. H.; Hansen, Å. M. Anal. Chim. Acta 2001, 449, 1.  doi: 10.1016/S0003-2670(01)01358-7

    59. [59]

      Seto, D.; Maki, T.; Soh, N.; Nakano, K.; Ishimatsu, R.; Imato, T. Talanta 2012, 94, 36.  doi: 10.1016/j.talanta.2012.02.025

    60. [60]

      Wu, Z.; Li, M.; Fang, H.; Wang, B. Bioorg. Med. Chem. Lett. 2012, 22, 7179.  doi: 10.1016/j.bmcl.2012.09.060

    61. [61]

      Wu, Z.; Yang, X.; Xu, W.; Wang, B.; Fang, H. Drug Discoveries Ther. 2012, 6, 238.
       

    62. [62]

      Chaicham, A.; Sahasithiwat, S.; Tuntulani, T.; Tomapatanaget, B. Chem. Commun. 2013, 49, 9287.  doi: 10.1039/c3cc45077e

    63. [63]

      Jun, E. J.; Liu, H.; Choi, J. Y.; Lee, J. Y.; Yoon, J. Sens. Actuators, B 2013, 176, 611.  doi: 10.1016/j.snb.2012.10.066

    64. [64]

      Ptak, T.; Młynarz, P.; Dobosz, A.; Rydzewska, A.; Prokopowicz, M. J. Mol. Struct. 2013, 1040, 59.  doi: 10.1016/j.molstruc.2013.02.013

    65. [65]

      Liu, S.; Y. Shi, F.; Zhao, X.; Chen, L.; Su, X. Biosens. Bioelectron. 2013, 47, 379.  doi: 10.1016/j.bios.2013.03.055

    66. [66]

      Ma, Y.; Zhao, Y.; Zhang, F. Sens. Actuators, B 2017, 241, 735.  doi: 10.1016/j.snb.2016.10.148

    67. [67]

      Yang, Z. R.; Wang, M. M.; Wang, X. S. Anal. Chem. 2017, 89, 1930.  doi: 10.1021/acs.analchem.6b04421

    68. [68]

      Xu, Z.; Kim, S. K.; Han, S. J.; Lee, C.; Kociok-Kohn, G.; James, T. D.; Yoon, J. Eur. J. Org. Chem. 2009, 18, 3058.
       

    69. [69]

      Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Chun, J.; Kim, Y.; Kim, S. J.; Yoon, J. J. Org. Chem. 2006, 71, 8626.  doi: 10.1021/jo061429x

    70. [70]

      Wu, X.; Chen, X. X.; Song, B. N.; Huang, Y. J.; Ouyang, W. J.; Li, Z.; Jiang, Y. B. Chem. Commun. 2014, 50, 13987.  doi: 10.1039/C4CC04542D

    71. [71]

      Solís-Delgado, L. E.; Ochoa-Terán, A.; Yatsimirsky, A. K. Anal. Lett. 2016, 49, 2301.  doi: 10.1080/00032719.2016.1147575

    72. [72]

      Mohammadpour, Z.; Safavi, A.; Omidvar, A.; Mohajeri, A.; Mobaraki, N.; Shamsipur, M. J. Fluorine Chem. 2016, 190, 12.  doi: 10.1016/j.jfluchem.2016.08.007

    73. [73]

      Guan, R.; Chen, H.; Cao, F.; Cao, D.; Deng, Y. Inorg. Chem. Commun. 2013, 38, 112.  doi: 10.1016/j.inoche.2013.10.024

    74. [74]

      Jose, D. A.; Elstner, M.; Schiller, A. Chem.-Eur. J. 2013, 19, 14451.  doi: 10.1002/chem.v19.43

    75. [75]

      Yoon, J. W.; Jeong, H.; Lee, M. H. Bull. Korean Chem. Soc. 2017, 38, 329.  doi: 10.1002/bkcs.11087

    76. [76]

      KyungáKwon, S.; NaáLee, H. Chem. Commun. 2008, 45, 5915.
       

    77. [77]

      Chen, X.; Li, H.; Jin, L. Tetrahedron Lett. 2014, 55, 2537.  doi: 10.1016/j.tetlet.2014.03.032

    78. [78]

      Higashi, A.; Kishikawa, N.; Ohyama, K. Tetrahedron Lett. 2017, 58, 2774.  doi: 10.1016/j.tetlet.2017.06.005

    79. [79]

      Rhee, S. G. Science 2006, 312, 1882.  doi: 10.1126/science.1130481

    80. [80]

      Lin, M. T.; Beal, M. F. Nature 2006, 443, 787.  doi: 10.1038/nature05292

    81. [81]

      Dai, H.; Lü, W.; Zuo, X.; Zhu, Q.; Pan, C.; Niu, X.; Chen, X. Biosens. Bioelectron. 2017, 95, 131.  doi: 10.1016/j.bios.2017.04.021

    82. [82]

      Reverte, M.; Vaissiere, A.; Boisguerin, P. ACS Sens. 2016, 1, 970.  doi: 10.1021/acssensors.6b00401

    83. [83]

      Chen, Z.; Tian, Z.; Kallio, K. J. Am. Chem. Soc. 2016, 138, 4900.  doi: 10.1021/jacs.6b01285

    84. [84]

      Rios, N.; Piacenza, L.; Trujillo, M. Free Radical Biol. Med. 2016, 101, 284.  doi: 10.1016/j.freeradbiomed.2016.08.033

    85. [85]

      Du, Ý, L.; Ni, N.; Li, M.; Wang, B. Tetrahedron Lett. 2010, 51, 1152.  doi: 10.1016/j.tetlet.2009.12.049

    86. [86]

      Du, L.; Li, M.; Zheng, S.; Wang, B. Tetrahedron Lett. 2008, 49, 3045.  doi: 10.1016/j.tetlet.2008.03.063

    87. [87]

      Li, J.; Sun, Q.; Mao, Y. J. Electroanal. Chem. 2017, 794, 1.  doi: 10.1016/j.jelechem.2017.03.042

    88. [88]

      Wu, S.; Guo, H.; Wang, L. Sens. Actuators, B 2017, 245, 11.  doi: 10.1016/j.snb.2017.01.101

    89. [89]

      Dervisevic, M.; Çevik, E.; Şenel, M. J. Electroanal. Chem. 2016, 776, 18.  doi: 10.1016/j.jelechem.2016.06.033

    90. [90]

      Silva-Carrillo, C.; Reynoso-Soto, E. A.; Paraguay-Delgado, F. J. Electroanal. Chem. 2017, 164, B86.  doi: 10.1149/2.0211704jes

    91. [91]

      Guo, S.; Chen, J.; Cai, B. Y. Mater. Chem. Front. 2017, 1, 61.  doi: 10.1039/C6QM00158K

    92. [92]

      Wang, W.; Kong, L.; Zhu, J. J. Colloid Interface Sci. 2017, 498, 1.  doi: 10.1016/j.jcis.2017.03.040

    93. [93]

      Jiang, G.; Zhu, W.; Shen, X. Microchim. Acta 2017, 1, 1.

    94. [94]

      Cheng, T.; Zhu, S.; Zhu, B. J. Sep. Sci. 2016, 39, 1347.  doi: 10.1002/jssc.v39.7

    95. [95]

      Na, W.; Liu, H.; Wang, M. Microchim. Acta 2017, 184, 1463.  doi: 10.1007/s00604-017-2090-x

    96. [96]

      Gu, S.; Ma, K.; Kong, J. Int. J. Electrochem. Sci. 2017, 12, 5092.
       

    97. [97]

      Abellán-Llobregat, A.; Jeerapan, I.; Bandodkar, A. Biosens. Bioelectron. 2017, 91, 885.  doi: 10.1016/j.bios.2017.01.058

    98. [98]

      Wu, S.; Guo, H. Wang, L. Sens. Actuators, B 2017, 245, 11.  doi: 10.1016/j.snb.2017.01.101

    99. [99]

      Takahashi, S.; Suzuki, I.; Nishiyama, T. Bumseki Kagaku 2016, 65, 751.  doi: 10.2116/bunsekikagaku.65.751

    100. [100]

      Zhou, Y.; Dong, H.; Liu, L. Biosens. Bioelectron. 2015, 64, 442.  doi: 10.1016/j.bios.2014.09.058

    101. [101]

      Gao, P.; Wang, Z.; Yang, L. Electrochim. Acta 2015, 151, 370.  doi: 10.1016/j.electacta.2014.11.054

    102. [102]

      Wang, Q.; Kaminska, I.; Niedziolka-Jonsson, J. Biosens. Bioelectron. 2013, 50, 331.  doi: 10.1016/j.bios.2013.06.015

    103. [103]

      Thearle, R. A.; Latiff, N. M.; Sofer, Z. Electroanalysis 2017, 29, 45.  doi: 10.1002/elan.v29.1

    104. [104]

      Zhou, X.; Gao, X.; Song, F. Appl. Surf. Sci. 2017, 423, 810.  doi: 10.1016/j.apsusc.2017.06.199

    105. [105]

      Lawrence, K.; Nishimura, T.; Haffenden, P.; Mitchels, J. M.; Sakurai, K.; Fossey, J. S. Marken, F. New J. Chem. 2013, 37, 1883.  doi: 10.1039/c3nj00017f

    106. [106]

      Suzuki, J.; Shida, N.; Inagi, S. Electroanalysis 2016, 28, 2797.  doi: 10.1002/elan.201600130

    107. [107]

      Yin, H.; Zhou, Y.; Yang, Z. Sens. Actuators, B 2015, 221, 1.
       

    108. [108]

      Wang, C.; Zholudov, Y. T.; Nsabimana, A., Xu, G.; Li, J. Anal. Chim. Acta 2016, 937, 39.  doi: 10.1016/j.aca.2016.07.026

    109. [109]

      Wang, C.; Wang, Q.; Zhong, M.; Kan, X. Analyst 2016, 141, 5792.  doi: 10.1039/C6AN01294A

    110. [110]

      Zhong, M.; Teng, Y.; Pang, S.; Yan, L.; Kan, X. Biosens. Bioelectron. 2015, 64, 212.  doi: 10.1016/j.bios.2014.08.083

    111. [111]

      Ooyama, Y.; Uenaka, K.; Matsugasako, A.; Harima, Y.; Ohshita, J. RSC Adv. 2013, 3, 23255.  doi: 10.1039/c3ra42833h

    112. [112]

      Zheng, J.; Zhang, M.; Guo, X.; Wang, J.; Xu, J. Sens. Actuators, B 2017, 250, 8.  doi: 10.1016/j.snb.2017.04.157

    113. [113]

      Sun, X.; Zhai, W.; Fossey, J. S.; James, T. D. Chem. Commun. 2016, 52, 3456.  doi: 10.1039/C5CC08633G

    114. [114]

      Wang, X.; Yuan, Z. F.; Fan, J.; Karch, K. R.; Ball, L. E.; Denu, J. M.; Garcia, B. A. Mol. Cell. Proteomics 2016, 15, 2462.  doi: 10.1074/mcp.O115.049627

    115. [115]

      Abdellaoui, S.; Corgier, B. C.; Mandon, C. A.; Doumèche, B.; Marquette, C. A.; Blum, L. J. Electroanalysis 2013, 25, 671.  doi: 10.1002/elan.v25.3

    116. [116]

      Nübel, G.; Sorgenfrei, F. A.; Jäschke, A. Methods 2017, 117, 14.  doi: 10.1016/j.ymeth.2016.09.008

    117. [117]

      Geninatti, C. S.; Alberti, D.; Szabo, I.; Aime, S.; Djanashvili, K. Angew. Chem. 2013, 52, 1161.  doi: 10.1002/anie.201207131

    118. [118]

      Wang, W.; Yin, R.; Zhang, M.; Yu, R.; Hao, C.; Zhang, L.; Jiang, T. J. Med. Chem. 2017, 60, 2840.  doi: 10.1021/acs.jmedchem.6b00326

    119. [119]

      Munusamy, S. K.; Thirumoorthy, K.; Muralidharan, V. P. Sens. Actuators, B 2017, 244, 175.  doi: 10.1016/j.snb.2016.12.099

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    20. [20]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

Metrics
  • PDF Downloads(86)
  • Abstract views(5749)
  • HTML views(2279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return