Citation: Hou Jiting, Li Kun, Qin Caiqin, Yu Xiaoqi. Review of the Small Molecular Fluorescent Sensors for Intracellular Reactive Oxygen Species[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 612-628. doi: 10.6023/cjoc201709020 shu

Review of the Small Molecular Fluorescent Sensors for Intracellular Reactive Oxygen Species

  • Corresponding author: Qin Caiqin, qincq@hbeu.edu.cn Yu Xiaoqi, 
  • Received Date: 13 September 2017
    Revised Date: 17 October 2017
    Available Online: 31 March 2017

    Fund Project: the National Natrual Science Foundation of China 31371750Project supported by the National Natrual Science Foundation of China (No. 31371750)

Figures(17)

  • Among the numerous bio-active species which are involved in the various chemical reactions in our body, reactive oxygen species (ROS) are a class of important biological species, which are oxidative. ROS can maintain the intracellular redox balance and are tightly related with the cell growth and death. Hence, the fluorescence detection of intracellular ROS has attracted wide attention. However, owining to the inherent features of ROS, such as the short lifetime and high reactivity, fluorescence analysis of ROS is always faced with some problems, like low selectivity and side reactions. Herein, the development of small molecular fluorescent probes for intracellular ROS over the past decade is summarized, and the design mechanisms and bio-applications of these probes are emphasized.
  • 加载中
    1. [1]

      Suh, Y. A.; Arnold, R. S.; Lassegue, B.; Shi, J.; Xu, X.; Sorescu, D.; Chung, A. B.; Griendling, K. K.; Lambeth, J. D. Nature 1999, 401, 79.  doi: 10.1038/43459

    2. [2]

      Koh, C. H.; Whiteman, M.; Li, Q. X.; Halliwell, B.; Jenner, A. M.; Wong, B. S.; Laughton, K. M.; Wenk, M.; Masters, C. L.; Beart, P. M.; Bernard, O.; Cheung, N. S. J. Neurochem. 2006, 98, 1278.  doi: 10.1111/jnc.2006.98.issue-4

    3. [3]

      Rhee, S. G. Science 2006, 312, 1882.  doi: 10.1126/science.1130481

    4. [4]

      Dickinson, B. C.; Srikun, D.; Chang, C. J. Curr. Opin. Chem. Biol. 2010, 14, 50.  doi: 10.1016/j.cbpa.2009.10.014

    5. [5]

      Peteu, S. F.; Boukherroub, R.; Szunerits S. Biosens. Bioelectron. 2014, 58, 359.  doi: 10.1016/j.bios.2014.02.025

    6. [6]

      Yamato, M.; Egashira, T.; Utsumi, H. Free Radical Biol. Med. 2003, 35, 1619.  doi: 10.1016/j.freeradbiomed.2003.09.013

    7. [7]

      de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.  doi: 10.1021/cr960386p

    8. [8]

      Berezin, M. Y.; Achilefu, S. Chem. Rev. 2010, 110, 2641.  doi: 10.1021/cr900343z

    9. [9]

      Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517.  doi: 10.1021/cr078203u

    10. [10]

      Pradhan, T.; Jung, H. S.; Jang, J. H.; Kim, T. W.; Kang, C.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4684.  doi: 10.1039/C3CS60477B

    11. [11]

      Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.  doi: 10.1039/c1cs15037e

    12. [12]

      Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2016, 45, 2976.  doi: 10.1039/C6CS00192K

    13. [13]

      Nagano, T. J. Clin. Biochem. Nutr. 2009, 45, 111.  doi: 10.3164/jcbn.R09-66

    14. [14]

      Aratani, Y.; Koyama, H.; Nyui, S.-I.; Suzuki, K.; Kura, F.; Maeda, N. Infect. Immun. 1999, 67, 1828.
       

    15. [15]

      Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 7313.  doi: 10.1021/ja068740g

    16. [16]

      Sun, Z.-N.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2008, 10, 2171.  doi: 10.1021/ol800507m

    17. [17]

      Hu, J. J.; Wong N.-K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D. Org. Lett. 2014, 16, 3544.  doi: 10.1021/ol501496n

    18. [18]

      Chen, X.; Wang, X.; Wang, S.; Shi, W.; Wang, K.; Ma, H. Chem. Eur. J. 2008, 14, 4719.  doi: 10.1002/(ISSN)1521-3765

    19. [19]

      Lin, W.; Long, L.; Chen, B.; Tan, W. Chem.-Eur. J. 2009, 15, 2305.  doi: 10.1002/chem.v15:10

    20. [20]

      Yuan, L.; Lin, W.; Song, J.; Yang, Y. Chem. Commun. 2011, 47, 12691.  doi: 10.1039/c1cc15762k

    21. [21]

      Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem. Commun. 2013, 49, 1014.  doi: 10.1039/C2CC37803E

    22. [22]

      Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.  doi: 10.1021/ja505988g

    23. [23]

      Hou, J.-T.; Wu, M.-Y.; Li, K.; Yang, J.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 8640.  doi: 10.1039/C4CC02673J

    24. [24]

      Hou, J.-T.; Li, K.; Yang, J.; Yu, K.-K.; Liao, Y.-X.; Ran, Y.-Z.; Liu, Y.-H.; Zhou, X.-D.; Yu, X.-Q. Chem. Commun. 2015, 51, 6781.  doi: 10.1039/C5CC01217A

    25. [25]

      Li, K.; Hou, J.-T.; Yang, J.; Yu, X.-Q. Chem. Commun. 2017, 53, 5539.  doi: 10.1039/C7CC01679D

    26. [26]

      Hu, J. J.; Wong, N.-K.; Lu, M.-Y.; Chen, X.; Ye, S.; Zhao, A. Q.; Gao, P.; Kao, R. Y.-T.; Shen, J.; Yang, D. Chem. Sci. 2016, 7, 2094.  doi: 10.1039/C5SC03855C

    27. [27]

      Yang, D.; Wang, H.-L.; Sun, Z.-N.; Chung, N.-W.; She, J.-G. J. Am. Chem. Soc. 2006, 128, 6004.  doi: 10.1021/ja0603756

    28. [28]

      Sun, Z.-N.; Wang, H.-L.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2009, 11, 1887.  doi: 10.1021/ol900279z

    29. [29]

      Peng, T.; Yang, D. Org. Lett. 2010, 12, 4932.  doi: 10.1021/ol102182j

    30. [30]

      Peng, T.; Wong, N.-K.; Chen, X.; Chan, Y.-K.; Ho, D. H.-H.; Sun, Z.; Hu, J. J.; Shen, J.; El-Nezami, H.; Yang, D. J. Am. Chem. Soc. 2014, 136, 11728.  doi: 10.1021/ja504624q

    31. [31]

      Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 10640.  doi: 10.1021/ja061972v

    32. [32]

      Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K. J. Am. Chem. Soc. 2011, 133, 11030.  doi: 10.1021/ja202582x

    33. [33]

      Xu, K.; Chen, H.; Tian, J.; Ding, B.; Xie, Y.; Qiang, M.; Tang, B. Chem. Commun. 2011, 47, 9468.  doi: 10.1039/c1cc12994e

    34. [34]

      Yu, F.; Li, P.; Wang, B.; Han, K. J. Am. Chem. Soc. 2013, 135, 7674.  doi: 10.1021/ja401360a

    35. [35]

      Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2010, 132, 2795.  doi: 10.1021/ja910090v

    36. [36]

      Hou, J.-T.; Yang, J.; Li, K.; Liao, Y.-X.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 9947.  doi: 10.1039/C4CC04192E

    37. [37]

      Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y. T. J. Am. Chem. Soc. 2017, 139, 285.  doi: 10.1021/jacs.6b10508

    38. [38]

      Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang, B. Chem. Sci. 2017, 8, 4006.  doi: 10.1039/C7SC00303J

    39. [39]

      Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2004, 126, 15392.  doi: 10.1021/ja0441716

    40. [40]

      Albers, A. E.; Okreglak, V. S.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 9640.  doi: 10.1021/ja063308k

    41. [41]

      Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Nat. Chem. Biol. 2007, 3, 263.  doi: 10.1038/nchembio871

    42. [42]

      Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.  doi: 10.1021/ja711480f

    43. [43]

      Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638.  doi: 10.1021/ja802355u

    44. [44]

      Albers, A. E.; Dickinson, B. C.; Miller, E. W.; Chang, C. J. Bioorg. Med. Chem. Lett. 2008, 18, 5948.  doi: 10.1016/j.bmcl.2008.08.035

    45. [45]

      Chung, C.; Srikun, D.; Lim, C. S.; Chang, C. J.; Cho, B. R. Chem. Commun. 2011, 47, 9618.  doi: 10.1039/c1cc13583j

    46. [46]

      Masanta, G.; Heo, C. H.; Lim, C. S.; Bae, S. K.; Cho, B. R.; Kim, H. M. Chem. Commun. 2012, 48, 3518.  doi: 10.1039/c2cc00034b

    47. [47]

      Karton-Lifshin, N.; Segal, E.; Omer, L.; Portnoy, M.; Satchi-Fainaro, R.; Shabat, D. J. Am. Chem. Soc. 2011, 133, 10960.  doi: 10.1021/ja203145v

    48. [48]

      Xu, M.; Han, J.-M.; Zhang, Y.; Yang, X.; Zang, L. Chem. Commun. 2013, 49, 11779.  doi: 10.1039/c3cc47631f

    49. [49]

      Xu, M.; Han, J.-M.; Wang, C.; Yang, X.; Pei, J.; Zang, L. ACS Appl. Mater. Interfaces 2014, 6, 8708.  doi: 10.1021/am501502v

    50. [50]

      Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 924.  doi: 10.1021/ol4000845

    51. [51]

      Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. Tetrahedron Lett. 2014, 55, 1471.  doi: 10.1016/j.tetlet.2014.01.056

    52. [52]

      Xu, J.; Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Biosens. Bioelectron. 2014, 56, 58.  doi: 10.1016/j.bios.2013.12.065

    53. [53]

      Sawaki, Y.; Foote, C. S. J. Am. Chem. Soc. 1979, 101, 6292.  doi: 10.1021/ja00515a023

    54. [54]

      Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 10629.  doi: 10.1021/ja203521e

    55. [55]

      Zhang, K.-M.; Dou, W.; Li, P.-X.; Shen, R.; Ru, J.-X.; Liu, W.; Cui, Y.-M.; Chen, C.-Y.; Liu, W.-S.; Bai, D.-C. Biosens. Bioelectron. 2015, 64, 542.  doi: 10.1016/j.bios.2014.09.073

    56. [56]

      Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. Chem. Commun. 2012, 48, 4980.  doi: 10.1039/c2cc30985h

    57. [57]

      Liao, Y.-X.; Li, K.; Wu, M.-Y.; Wu, T.; Yu, X.-Q. Org. Biomol. Chem. 2014, 12, 3004.  doi: 10.1039/c4ob00206g

    58. [58]

      Dong, B.; Song, X.; Kong, X.; Wang, C.; Tang, Y.; Liu, Y.; Lin, W. Adv. Mater. 2016, 28, 8755.  doi: 10.1002/adma.201602939

    59. [59]

      Zhou, X.; Lesiak, L.; Lai, R.; Beck, J. R.; Zhao, J.; Elowsky, C. G.; Li, H.; Stains, C. I. Angew. Chem., Int. Ed. 2017, 56, 4197.  doi: 10.1002/anie.201612628

    60. [60]

      Tang, B.; Zhang, L.; Zhang, L. L. Anal. Biochem. 2004, 326, 176.  doi: 10.1016/j.ab.2003.11.023

    61. [61]

      Gao, J. J.; Xu, K. H.; Tang, B.; Yin, L. L.; Yang, G. W.; An, L. G. FEBS J. 2007, 274, 1725.  doi: 10.1111/j.1742-4658.2007.05720.x

    62. [62]

      Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B. Anal. Chem. 2013, 85, 9877.  doi: 10.1021/ac402409m

    63. [63]

      Maeda, H.; Yamamoto, K.; Nomura, Y.; Kohno, I.; Hafsi, L.; Ueda, N.; Yoshida, S.; Fukuda, M.; Fukuyasu, Y.; Yamauchi, Y.; Itoh, N. J. Am. Chem. Soc. 2005, 127, 68.  doi: 10.1021/ja047018k

    64. [64]

      Maeda, H.; Yamamoto, K.; Kohno, I.; Hafsi, L.; Itoh, N.; Nakagawa, S.; Kanagawa, N.; Suzuki, K.; Uno, T. Chem.-Eur. J. 2007, 13, 1946.  doi: 10.1002/(ISSN)1521-3765

    65. [65]

      Zhang, W.; Li, P.; Yang, F.; Hu, X.; Sun, C.; Zhang, W.; Chen, D.; Tang, B. J. Am. Chem. Soc. 2013, 135, 14956.  doi: 10.1021/ja408524j

    66. [66]

      Zhang, J. J.; Li, C. W.; Zhang, R.; Zhang, F. Y.; Liu, W.; Liu, X. Y.; Lee, S. M. Y.; Zhang, H. X. Chem. Commun. 2016, 52, 2679.  doi: 10.1039/C5CC09976E

    67. [67]

      Xiao, H. B.; Liu, X.; Wu, C. C.; Wu, Y. H.; Li, P.; Guo, X. M.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.  doi: 10.1016/j.bios.2016.12.068

    68. [68]

      Li, R. Q.; Mao, Z. Q.; Rong, L.; Wu, N.; Lei, Q.; Zhu, J. Y.; Zhuang, L.; Zhang, X. Z.; Liu, Z. H. Biosens. Bioelectron. 2017, 87, 73.  doi: 10.1016/j.bios.2016.08.008

    69. [69]

      Pou, S.; Huang, Y. I.; Bhan, A.; Bhadti, V. S.; Hosmane, R. S.; Wu, S. Y.; Cao, G. L.; Rosen, G. M. Anal. Biochem. 1993, 212, 85.  doi: 10.1006/abio.1993.1295

    70. [70]

      Yang, X.-F.; Guo, X.-Q. Anal. Chim. Acta 2001, 434, 169.  doi: 10.1016/S0003-2670(01)00821-2

    71. [71]

      Yang, X. F.; Guo, X. Q. Analyst 2001, 126, 1800.  doi: 10.1039/b103208a

    72. [72]

      Li, P.; Xie, T.; Duan, X.; Yu, F.; Wang, X.; Tang, B. Chem.-Eur. J. 2010, 16, 1834.  doi: 10.1002/chem.v16:6

    73. [73]

      Yuan, L.; Lin, W.; Song, J. Chem. Commun. 2010, 46, 7930.  doi: 10.1039/c0cc02390f

    74. [74]

      Wang, J. Y.; Liu, Z. R.; Ren, M. G.; Kong, X. Q.; Liu, K. Y.; Deng, B. B.; Lin, W. Y. Sens. Actuators, B 2016, 236, 60.  doi: 10.1016/j.snb.2016.04.163

    75. [75]

      Kim, M.; Ko, S.-K.; Kim, H.; Shin, I.; Tae, J. Chem. Commun. 2013, 49, 7959.  doi: 10.1039/c3cc44627a

    76. [76]

      Meng, L.; Wu, Y.; Yi, T. Chem. Commun. 2014, 50, 4843.  doi: 10.1039/C4CC00975D

    77. [77]

      Liu, F.; Du, J.; Song, D.; Xu, M. Y.; Sun, G. P. Chem. Commun. 2016, 52, 4636.  doi: 10.1039/C5CC10658C

    78. [78]

      Steinbeck, M. J.; Khan, A. U.; Karnovsky, M. J. J. Biol. Chem. 1992, 267, 13425.

    79. [79]

      Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 1999, 38, 2899.  doi: 10.1002/(ISSN)1521-3773

    80. [80]

      Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2001, 123, 2530.  doi: 10.1021/ja0035708

    81. [81]

      Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2014, 136, 11707.  doi: 10.1021/ja504279r

    82. [82]

      Xu, K.; Wang, L.; Qiang, M.; Wang, L.; Li, P.; Tang, B. Chem. Commun. 2011, 47, 7386.  doi: 10.1039/c1cc12473k

    83. [83]

      Aubry, J.-M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003, 36, 668.  doi: 10.1021/ar010086g

    84. [84]

      Song, D.; Cho, S.; Han, Y.; You, Y.; Nam, W. Org. Lett. 2013, 15, 3582.  doi: 10.1021/ol401421r

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    14. [14]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    17. [17]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

Metrics
  • PDF Downloads(69)
  • Abstract views(7326)
  • HTML views(2170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return