Review of the Small Molecular Fluorescent Sensors for Intracellular Reactive Oxygen Species
- Corresponding author: Qin Caiqin, qincq@hbeu.edu.cn Yu Xiaoqi,
Citation:
Hou Jiting, Li Kun, Qin Caiqin, Yu Xiaoqi. Review of the Small Molecular Fluorescent Sensors for Intracellular Reactive Oxygen Species[J]. Chinese Journal of Organic Chemistry,
;2018, 38(3): 612-628.
doi:
10.6023/cjoc201709020
Suh, Y. A.; Arnold, R. S.; Lassegue, B.; Shi, J.; Xu, X.; Sorescu, D.; Chung, A. B.; Griendling, K. K.; Lambeth, J. D. Nature 1999, 401, 79.
doi: 10.1038/43459
Koh, C. H.; Whiteman, M.; Li, Q. X.; Halliwell, B.; Jenner, A. M.; Wong, B. S.; Laughton, K. M.; Wenk, M.; Masters, C. L.; Beart, P. M.; Bernard, O.; Cheung, N. S. J. Neurochem. 2006, 98, 1278.
doi: 10.1111/jnc.2006.98.issue-4
Rhee, S. G. Science 2006, 312, 1882.
doi: 10.1126/science.1130481
Dickinson, B. C.; Srikun, D.; Chang, C. J. Curr. Opin. Chem. Biol. 2010, 14, 50.
doi: 10.1016/j.cbpa.2009.10.014
Peteu, S. F.; Boukherroub, R.; Szunerits S. Biosens. Bioelectron. 2014, 58, 359.
doi: 10.1016/j.bios.2014.02.025
Yamato, M.; Egashira, T.; Utsumi, H. Free Radical Biol. Med. 2003, 35, 1619.
doi: 10.1016/j.freeradbiomed.2003.09.013
de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
doi: 10.1021/cr960386p
Berezin, M. Y.; Achilefu, S. Chem. Rev. 2010, 110, 2641.
doi: 10.1021/cr900343z
Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517.
doi: 10.1021/cr078203u
Pradhan, T.; Jung, H. S.; Jang, J. H.; Kim, T. W.; Kang, C.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4684.
doi: 10.1039/C3CS60477B
Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.
doi: 10.1039/c1cs15037e
Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2016, 45, 2976.
doi: 10.1039/C6CS00192K
Nagano, T. J. Clin. Biochem. Nutr. 2009, 45, 111.
doi: 10.3164/jcbn.R09-66
Aratani, Y.; Koyama, H.; Nyui, S.-I.; Suzuki, K.; Kura, F.; Maeda, N. Infect. Immun. 1999, 67, 1828.
Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 7313.
doi: 10.1021/ja068740g
Sun, Z.-N.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2008, 10, 2171.
doi: 10.1021/ol800507m
Hu, J. J.; Wong N.-K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D. Org. Lett. 2014, 16, 3544.
doi: 10.1021/ol501496n
Chen, X.; Wang, X.; Wang, S.; Shi, W.; Wang, K.; Ma, H. Chem. Eur. J. 2008, 14, 4719.
doi: 10.1002/(ISSN)1521-3765
Lin, W.; Long, L.; Chen, B.; Tan, W. Chem.-Eur. J. 2009, 15, 2305.
doi: 10.1002/chem.v15:10
Yuan, L.; Lin, W.; Song, J.; Yang, Y. Chem. Commun. 2011, 47, 12691.
doi: 10.1039/c1cc15762k
Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem. Commun. 2013, 49, 1014.
doi: 10.1039/C2CC37803E
Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.
doi: 10.1021/ja505988g
Hou, J.-T.; Wu, M.-Y.; Li, K.; Yang, J.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 8640.
doi: 10.1039/C4CC02673J
Hou, J.-T.; Li, K.; Yang, J.; Yu, K.-K.; Liao, Y.-X.; Ran, Y.-Z.; Liu, Y.-H.; Zhou, X.-D.; Yu, X.-Q. Chem. Commun. 2015, 51, 6781.
doi: 10.1039/C5CC01217A
Li, K.; Hou, J.-T.; Yang, J.; Yu, X.-Q. Chem. Commun. 2017, 53, 5539.
doi: 10.1039/C7CC01679D
Hu, J. J.; Wong, N.-K.; Lu, M.-Y.; Chen, X.; Ye, S.; Zhao, A. Q.; Gao, P.; Kao, R. Y.-T.; Shen, J.; Yang, D. Chem. Sci. 2016, 7, 2094.
doi: 10.1039/C5SC03855C
Yang, D.; Wang, H.-L.; Sun, Z.-N.; Chung, N.-W.; She, J.-G. J. Am. Chem. Soc. 2006, 128, 6004.
doi: 10.1021/ja0603756
Sun, Z.-N.; Wang, H.-L.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2009, 11, 1887.
doi: 10.1021/ol900279z
Peng, T.; Yang, D. Org. Lett. 2010, 12, 4932.
doi: 10.1021/ol102182j
Peng, T.; Wong, N.-K.; Chen, X.; Chan, Y.-K.; Ho, D. H.-H.; Sun, Z.; Hu, J. J.; Shen, J.; El-Nezami, H.; Yang, D. J. Am. Chem. Soc. 2014, 136, 11728.
doi: 10.1021/ja504624q
Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 10640.
doi: 10.1021/ja061972v
Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K. J. Am. Chem. Soc. 2011, 133, 11030.
doi: 10.1021/ja202582x
Xu, K.; Chen, H.; Tian, J.; Ding, B.; Xie, Y.; Qiang, M.; Tang, B. Chem. Commun. 2011, 47, 9468.
doi: 10.1039/c1cc12994e
Yu, F.; Li, P.; Wang, B.; Han, K. J. Am. Chem. Soc. 2013, 135, 7674.
doi: 10.1021/ja401360a
Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2010, 132, 2795.
doi: 10.1021/ja910090v
Hou, J.-T.; Yang, J.; Li, K.; Liao, Y.-X.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 9947.
doi: 10.1039/C4CC04192E
Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y. T. J. Am. Chem. Soc. 2017, 139, 285.
doi: 10.1021/jacs.6b10508
Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang, B. Chem. Sci. 2017, 8, 4006.
doi: 10.1039/C7SC00303J
Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2004, 126, 15392.
doi: 10.1021/ja0441716
Albers, A. E.; Okreglak, V. S.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 9640.
doi: 10.1021/ja063308k
Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Nat. Chem. Biol. 2007, 3, 263.
doi: 10.1038/nchembio871
Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.
doi: 10.1021/ja711480f
Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638.
doi: 10.1021/ja802355u
Albers, A. E.; Dickinson, B. C.; Miller, E. W.; Chang, C. J. Bioorg. Med. Chem. Lett. 2008, 18, 5948.
doi: 10.1016/j.bmcl.2008.08.035
Chung, C.; Srikun, D.; Lim, C. S.; Chang, C. J.; Cho, B. R. Chem. Commun. 2011, 47, 9618.
doi: 10.1039/c1cc13583j
Masanta, G.; Heo, C. H.; Lim, C. S.; Bae, S. K.; Cho, B. R.; Kim, H. M. Chem. Commun. 2012, 48, 3518.
doi: 10.1039/c2cc00034b
Karton-Lifshin, N.; Segal, E.; Omer, L.; Portnoy, M.; Satchi-Fainaro, R.; Shabat, D. J. Am. Chem. Soc. 2011, 133, 10960.
doi: 10.1021/ja203145v
Xu, M.; Han, J.-M.; Zhang, Y.; Yang, X.; Zang, L. Chem. Commun. 2013, 49, 11779.
doi: 10.1039/c3cc47631f
Xu, M.; Han, J.-M.; Wang, C.; Yang, X.; Pei, J.; Zang, L. ACS Appl. Mater. Interfaces 2014, 6, 8708.
doi: 10.1021/am501502v
Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 924.
doi: 10.1021/ol4000845
Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. Tetrahedron Lett. 2014, 55, 1471.
doi: 10.1016/j.tetlet.2014.01.056
Xu, J.; Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Biosens. Bioelectron. 2014, 56, 58.
doi: 10.1016/j.bios.2013.12.065
Sawaki, Y.; Foote, C. S. J. Am. Chem. Soc. 1979, 101, 6292.
doi: 10.1021/ja00515a023
Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 10629.
doi: 10.1021/ja203521e
Zhang, K.-M.; Dou, W.; Li, P.-X.; Shen, R.; Ru, J.-X.; Liu, W.; Cui, Y.-M.; Chen, C.-Y.; Liu, W.-S.; Bai, D.-C. Biosens. Bioelectron. 2015, 64, 542.
doi: 10.1016/j.bios.2014.09.073
Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. Chem. Commun. 2012, 48, 4980.
doi: 10.1039/c2cc30985h
Liao, Y.-X.; Li, K.; Wu, M.-Y.; Wu, T.; Yu, X.-Q. Org. Biomol. Chem. 2014, 12, 3004.
doi: 10.1039/c4ob00206g
Dong, B.; Song, X.; Kong, X.; Wang, C.; Tang, Y.; Liu, Y.; Lin, W. Adv. Mater. 2016, 28, 8755.
doi: 10.1002/adma.201602939
Zhou, X.; Lesiak, L.; Lai, R.; Beck, J. R.; Zhao, J.; Elowsky, C. G.; Li, H.; Stains, C. I. Angew. Chem., Int. Ed. 2017, 56, 4197.
doi: 10.1002/anie.201612628
Tang, B.; Zhang, L.; Zhang, L. L. Anal. Biochem. 2004, 326, 176.
doi: 10.1016/j.ab.2003.11.023
Gao, J. J.; Xu, K. H.; Tang, B.; Yin, L. L.; Yang, G. W.; An, L. G. FEBS J. 2007, 274, 1725.
doi: 10.1111/j.1742-4658.2007.05720.x
Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B. Anal. Chem. 2013, 85, 9877.
doi: 10.1021/ac402409m
Maeda, H.; Yamamoto, K.; Nomura, Y.; Kohno, I.; Hafsi, L.; Ueda, N.; Yoshida, S.; Fukuda, M.; Fukuyasu, Y.; Yamauchi, Y.; Itoh, N. J. Am. Chem. Soc. 2005, 127, 68.
doi: 10.1021/ja047018k
Maeda, H.; Yamamoto, K.; Kohno, I.; Hafsi, L.; Itoh, N.; Nakagawa, S.; Kanagawa, N.; Suzuki, K.; Uno, T. Chem.-Eur. J. 2007, 13, 1946.
doi: 10.1002/(ISSN)1521-3765
Zhang, W.; Li, P.; Yang, F.; Hu, X.; Sun, C.; Zhang, W.; Chen, D.; Tang, B. J. Am. Chem. Soc. 2013, 135, 14956.
doi: 10.1021/ja408524j
Zhang, J. J.; Li, C. W.; Zhang, R.; Zhang, F. Y.; Liu, W.; Liu, X. Y.; Lee, S. M. Y.; Zhang, H. X. Chem. Commun. 2016, 52, 2679.
doi: 10.1039/C5CC09976E
Xiao, H. B.; Liu, X.; Wu, C. C.; Wu, Y. H.; Li, P.; Guo, X. M.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.
doi: 10.1016/j.bios.2016.12.068
Li, R. Q.; Mao, Z. Q.; Rong, L.; Wu, N.; Lei, Q.; Zhu, J. Y.; Zhuang, L.; Zhang, X. Z.; Liu, Z. H. Biosens. Bioelectron. 2017, 87, 73.
doi: 10.1016/j.bios.2016.08.008
Pou, S.; Huang, Y. I.; Bhan, A.; Bhadti, V. S.; Hosmane, R. S.; Wu, S. Y.; Cao, G. L.; Rosen, G. M. Anal. Biochem. 1993, 212, 85.
doi: 10.1006/abio.1993.1295
Yang, X.-F.; Guo, X.-Q. Anal. Chim. Acta 2001, 434, 169.
doi: 10.1016/S0003-2670(01)00821-2
Yang, X. F.; Guo, X. Q. Analyst 2001, 126, 1800.
doi: 10.1039/b103208a
Li, P.; Xie, T.; Duan, X.; Yu, F.; Wang, X.; Tang, B. Chem.-Eur. J. 2010, 16, 1834.
doi: 10.1002/chem.v16:6
Yuan, L.; Lin, W.; Song, J. Chem. Commun. 2010, 46, 7930.
doi: 10.1039/c0cc02390f
Wang, J. Y.; Liu, Z. R.; Ren, M. G.; Kong, X. Q.; Liu, K. Y.; Deng, B. B.; Lin, W. Y. Sens. Actuators, B 2016, 236, 60.
doi: 10.1016/j.snb.2016.04.163
Kim, M.; Ko, S.-K.; Kim, H.; Shin, I.; Tae, J. Chem. Commun. 2013, 49, 7959.
doi: 10.1039/c3cc44627a
Meng, L.; Wu, Y.; Yi, T. Chem. Commun. 2014, 50, 4843.
doi: 10.1039/C4CC00975D
Liu, F.; Du, J.; Song, D.; Xu, M. Y.; Sun, G. P. Chem. Commun. 2016, 52, 4636.
doi: 10.1039/C5CC10658C
Steinbeck, M. J.; Khan, A. U.; Karnovsky, M. J. J. Biol. Chem. 1992, 267, 13425.
Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 1999, 38, 2899.
doi: 10.1002/(ISSN)1521-3773
Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2001, 123, 2530.
doi: 10.1021/ja0035708
Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2014, 136, 11707.
doi: 10.1021/ja504279r
Xu, K.; Wang, L.; Qiang, M.; Wang, L.; Li, P.; Tang, B. Chem. Commun. 2011, 47, 7386.
doi: 10.1039/c1cc12473k
Aubry, J.-M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003, 36, 668.
doi: 10.1021/ar010086g
Song, D.; Cho, S.; Han, Y.; You, Y.; Nam, W. Org. Lett. 2013, 15, 3582.
doi: 10.1021/ol401421r
Yanxi LIU , Mengjia XU , Haonan CHEN , Quan LIU , Yuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
Wei GAO , Meiqi SONG , Xuan REN , Jianliang BAI , Jing SU , Jianlong MA , Zhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Benhua Wang , Chaoyi Yao , Yiming Li , Qing Liu , Minhuan Lan , Guipeng Yu , Yiming Luo , Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235