Citation: Kong Shengnan, Malik Abaid Ullah, Qian Xuefeng, Shu Mouhai, Xiao Wende. Asymmetric Hydrogenation of β-Keto Esters Catalyzed by Ruthenium Species Supported on Porous Organic Polymer[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 656-664. doi: 10.6023/cjoc201709018 shu

Asymmetric Hydrogenation of β-Keto Esters Catalyzed by Ruthenium Species Supported on Porous Organic Polymer

  • Corresponding author: Qian Xuefeng, mhshu@sjtu.edu.cn
  • Received Date: 12 September 2017
    Revised Date: 10 November 2017
    Available Online: 17 March 2017

    Fund Project: the National Natural Science Foundation of China 21271129Project supported by the National Natural Science Foundation of China (No. 21271129)

Figures(6)

  • A porous organic polymer (POP) with chiral 2, 2'-bis(diphenylphosphino)-1, 1'-binaphthalene (BINAP) has been prepared and characterized by several techniques including 13C CP/MAS NMR, 31P CP/MAS NMR, fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption. The material exhibits amorphous microporous structure. After loading of ruthenium(Ⅱ) species via coordination, the composite material Ru/POP-BINAP could be used as a heterogeneous catalyst for the asymmetric hydrogenation of β-keto esters with high activity, excellent enantioselectivity and recyclability.
  • 加载中
    1. [1]

      Collins, A. N.; Sheldrake, G.; Crosby, J. Chirality in Industry, Volume Ⅱ, New York, 1998.

    2. [2]

      Liu, X.; Han, Z. B.; Wang, Z.; Ding, K. L. Sci. China Chem. 2014, 57, 1073.  doi: 10.1007/s11426-014-5134-7

    3. [3]

      Zhang, K. F.; Li, F.; Nie, J.; Ma, J. A. Sci. China Chem. 2014, 57, 265.  doi: 10.1007/s11426-013-5017-3

    4. [4]

      van Leeuwen, P. W.; Kamer, P. C.; Claver, C.; Pàmies, O.; Diéguez, M. Chem. Rev. 2010, 111, 2077.
       

    5. [5]

      Yang, Q. H.; Liu, J.; Zhang, L. Sci. China Chem. 2010, 53, 351.  doi: 10.1007/s11426-010-0046-7

    6. [6]

      Wang, P. Y.; Liu, X.; Yang, J.; Yang, Y.; Zhang, L.; Yang, Q. H.; Li, C. J. Mater. Chem. 2009, 19, 8009.  doi: 10.1039/b913808k

    7. [7]

      Wang, Z. J.; Deng, G. J.; Li, Y.; He, Y. M.; Tang, W. J.; Fan, Q. H. Org. Lett. 2007, 9, 1243.  doi: 10.1021/ol0631410

    8. [8]

      Deng, G. J.; Fan, Q. H.; Chen, X. M.; Liu, D. S.; Chan, A. S. Chem. Commun. 2002, 15, 1570.

    9. [9]

      Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. Adv. Synth. Catal. 2011, 353, 3101.  doi: 10.1002/adsc.v353.17

    10. [10]

      Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 1450.  doi: 10.1039/C3CS60298B

    11. [11]

      Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2011, 112, 1196.

    12. [12]

      Falkowski, J. M.; Sawano, T.; Zhang, T.; Tsun, G.; Chen, Y.; Lockard, J. V.; Lin, W. J. Am. Chem. Soc. 2014, 136, 5213.  doi: 10.1021/ja500090y

    13. [13]

      Farha, O. K.; Bae, Y. S. Hauser, B. G.; Spokoyny, A. M.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T. Chem. Commun. 2010, 46, 1056.  doi: 10.1039/b922554d

    14. [14]

      Lu, S. L.; Jin, Y. H.; Gu, H. W.; Zhang, W. Sci. China Chem. 2017, 60, 999.  doi: 10.1007/s11426-017-9078-7

    15. [15]

      Lu, X. L.; Zhou, T. Y.; Wu, D. F.; Wen, Q.; Zhao, X.; Li, Q. W.; Xiang, Q.; Xu, J. Q.; Li, Z. T. Chin. J. Chem. 2015, 33, 539.  doi: 10.1002/cjoc.201500181

    16. [16]

      Liu, G. F.; Sheng, J. H.; Zhao, Y. L. Sci. China Chem. 2017, 60, 1015.

    17. [17]

      Zhou, B. L.; Chen, L. Acta Chim. Sinica 2015, 73, 487(in Chinese). 

    18. [18]

      Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672.  doi: 10.1038/nchem.695

    19. [19]

      Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem., Int. Ed. 2008, 47, 8826.  doi: 10.1002/anie.v47:46

    20. [20]

      Zou, X. Q.; Ren, H.; Zhu, G. S. Chem. Commun. 2013, 49, 3925.  doi: 10.1039/c3cc00039g

    21. [21]

      Sun, C. J.; Zhao, X. Q. Wang, P. F.; Wang, H.; Han, B. H. Sci. China Chem. 2017, 60, 1067.

    22. [22]

      Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, AI. Chem. Commun. 2008, 8, 486.

    23. [23]

      Huang, N.; Day, G.; Yang, X.; Drake, H.; Zhou, H. C. Sci. China Chem. 2017, 60, 1007.  doi: 10.1007/s11426-017-9084-7

    24. [24]

      Li, Y.; Ben, T.; Qiu, S. l. Acta Chim. Sinica 2015, 73, 605(in Chinese).
       

    25. [25]

      Feng, X. L.; Liang, Y. Y.; Zhi, L. J.; Thomas, A.; Wu, D. Q.; Lieberwirth, I.; Kolb, U.; Müllen, K. Adv. Funct. Mater. 2009, 19, 2125.  doi: 10.1002/adfm.v19:13

    26. [26]

      Chen, L.; Honsho, H.; Seki, S.; Jiang, D. L. J. Am. Chem. Soc. 2010, 19, 6742.

    27. [27]

      Xu, Y.; Nagai, A.; Jiang, D. Chem. Commun. 2013, 49, 1591.  doi: 10.1039/C2CC38211C

    28. [28]

      Chen, L.; Yang, Y.; Jiang, D. L. J. Am. Chem. Soc. 2010, 132, 9138.  doi: 10.1021/ja1028556

    29. [29]

      Wang, C. A.; Wang, W. Acta Chim. Sinica 2015, 73, 498(in Chinese).  doi: 10.3866/PKU.WHXB201412162

    30. [30]

      Heitbaum, M.; Glorius, F.; Escher, I. Angew. Chem., Int. Ed. 2006, 45, 4732.  doi: 10.1002/(ISSN)1521-3773

    31. [31]

      Ren, X. M.; Kong, S. N.; Shu, Q. D.; Shu, M. H. Chin. J. Chem. 2016, 34, 373.  doi: 10.1002/cjoc.201500797

    32. [32]

      Dong, J.; Liu, Y.; Cui, Y. Chem. Commun. 2014, 50, 14949.  doi: 10.1039/C4CC07648F

    33. [33]

      Wang, X. R.; Han, X.; Zhang, J.; Wu, X. W.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 12332.  doi: 10.1021/jacs.6b07714

    34. [34]

      Wang, C. A.; Zhang, Z. K.; Yue, T.; Sun, Y. L.; Wang, L.; Wang, W. D.; Zhang, Y.; Liu, C.; Wang, W. Chem. Eur. J. 2012, 18, 6718.  doi: 10.1002/chem.201200753

    35. [35]

      An, W. K.; Han, M. Y.; Wang, C. A.; Yu, S. M.; Zhang, Y.; Bai, S.; Wang, W. Chem.-Eur. J. 2014, 20, 11019.  doi: 10.1002/chem.201403002

    36. [36]

      Xu, H.; Gao, J.; Jiang, D. L. Nat. Chem. 2015, 7, 905.  doi: 10.1038/nchem.2352

    37. [37]

      Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Chem. Commun. 2014, 50, 1292.  doi: 10.1039/C3CC48813F

    38. [38]

      Ma, L. Q.; Wanderley, M. M.; Lin, W. B. ACS Catal. 2011, 1, 691.  doi: 10.1021/cs2001303

    39. [39]

      Wang, X.; Lu, S. M.; Li, J.; Liu, Y.; Li, C. Catal. Sci. Technol. 2015, 5, 2585.  doi: 10.1039/C5CY00038F

    40. [40]

      Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691.  doi: 10.1126/science.1083622

    41. [41]

      Noyori, R.; Ohkuma, T.; Kitamura, T.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. ChemInform 1988, 19, 5856.

    42. [42]

      Hu, A. G.; Ngo, H. L.; Lin, W. B. Angew. Chem. 2003, 115, 6182.  doi: 10.1002/(ISSN)1521-3757

    43. [43]

      Huang, Y. Y.; He, Y. M.; Zhou, H. F.; Wu, L.; Li, B. L.; Fan, Q. H. J. Org. Chem. 2006, 71, 2874.  doi: 10.1021/jo052092m

    44. [44]

      Sun, Q.; Meng, X.; Liu, X.; Zhang, X.; Yang, Y.; Yang, Q.; Xiao, F. S. Chem. Commun. 2012, 48, 10505.  doi: 10.1039/c2cc35192g

    45. [45]

      Wang, T.; Yuan, L.; Chen, X. K.; Li, C. Y.; Jiang, M.; Song, X.; Ding, Y. J. RSC Adv. 2016, 6, 28447.  doi: 10.1039/C5RA23597A

    46. [46]

      Bayston, D. J.; Fraser, J. L.; Ashton, M. R.; Baxter, A. D.; Polywka, M. E. C.; Moses, E. J. Org. Chem. 1998, 63, 3137.  doi: 10.1021/jo972330g

    47. [47]

      Kesanli, B.; Lin, W. B. Chem. Commun. 2004, 36, 2284.

    48. [48]

      Fan, Q. H.; Chen, Y. M.; Chen, X. M.; Jiang, D. Z.; Xi, F.; Chan, A. S. C. Chem. Commun. 2000, 31, 789.

    49. [49]

      Seki, T.; McEleney, K.; Crudden, C. M. Chem. Commu. 2012, 48, 6369.  doi: 10.1039/c2cc31247f

    50. [50]

      Deng, G. J.; Yi, B.; Huang, Y. Y.; Tang, W. J.; He, Y. M.; Fan, Q. H. Adv. Synth. Catal. 2004, 346, 1440.  doi: 10.1002/(ISSN)1615-4169

    51. [51]

      Patel, H. A.; Je, S. H.; Park, J.; Jung, Y.; Coskun, A.; Yavuz, C. T. Chem. Eur. J. 2014, 20, 772.  doi: 10.1002/chem.v20.3

    52. [52]

      Qiu, D. F.; Zhao, Q.; Bao, X. Y.; Liu, K. C.; Wang, H. W.; Guo, Y. C.; Zhang, L. F.; Zeng, J. L.; Wang, H. Inorg. Chem. Commun. 2011, 14, 296.  doi: 10.1016/j.inoche.2010.11.019

    53. [53]

      Geneste, F.; Moinet, C.; Ababou-Girard, S.; Solal, F. Inorg. Chem. 2005, 44, 4366.  doi: 10.1021/ic048231k

    54. [54]

      Florea, M.; Sevinci, M.; Pârvulesscu, V. I.; Lemay, G.; Kaliaguine, S. Microporous Mesoporous Mater. 2011, 44, 483.

    55. [55]

      Marwan, J.; Addou, T.; Bélanger, D. Chem. Mater. 2005, 17, 2395.  doi: 10.1021/cm047871i

    56. [56]

      Dai, L. X. Angew. Chem. Int. Ed. 2004, 43, 5726.; Padhi S. K.; Titu, D.; Pandian, N. G.; Chadha, A. Tetrahedron 2006, 62, 5133.

    57. [57]

      (a) Hu, A. ; Ngo, H. L. ; Lin, W. ChemInform 2004, 35, 2501.
      (b) Chen, L. ; Ma, M. L. ; Peng, Z. H. ; Chen, H. Chin. J. Org. Chem. 2008, 28, 1724(in Chinese).
      (陈丽, 马森林, 彭宗海, 陈华, 有机化学, 2008, 28, 1724.

    58. [58]

      Berthod, M.; Saluzzo, C.; Mignani, G.; Lemaire, M. Tetrahedron:Asymmetry 2004, 15, 639.  doi: 10.1016/j.tetasy.2003.12.033

    59. [59]

      Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. B. T. J. Mater. Chem. 2011, 21, 1700.  doi: 10.1039/c0jm03483e

    60. [60]

      Shu, W. F.; Guan, C. W.; Guo, W. H.; Wang, C. Y.; Shen, Y. J. J. Mater. Chem. 2012, 22, 3075.  doi: 10.1039/c1jm15535k

    61. [61]

      Plietzsch, O.; Schilling, C. I.; Grab, T.; Grage, S. L.; Ulrich, A. S.; Comotti, A.; Sozzani, P.; Muller, T.; Bräse, S. New. J. Chem. 2011, 35, 1577.  doi: 10.1039/c1nj20370c

    62. [62]

      Sun, Y.; Wan, X.; Guo, M.; Wang, D.; Dong, X.; Pan, Y.; Zhang, Z. G. Tetrahedron:Asymmetry 2004, 15, 2185.  doi: 10.1016/j.tetasy.2004.04.034

    63. [63]

      Capozzi, G.; Roelens, S.; Talami, S. J. Org. Chem. 1993, 58, 7932.  doi: 10.1021/jo00079a049

    64. [64]

      Hutton, J. A.; Goncalves, V.; Brannigan, J. A.; Paape, D.; Wright, M. H.; Waugh, T. M.; Roberts, S. M; Bell, A. S.; Wilkinson, A. J.; Smith, D. F.; Leatherbarrow, R. J.; Tate, E. W. J. Med. Chem. 2014, 57, 8664.  doi: 10.1021/jm5011397

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    4. [4]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    5. [5]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    6. [6]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    7. [7]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    8. [8]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    9. [9]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    12. [12]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    13. [13]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    14. [14]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    15. [15]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    16. [16]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    17. [17]

      Bofeng LiYuxian WangYa LiuZhe HanTiantian XingYumin ZhangChunmao Chen . Design and engineering strategies of porous carbonaceous catalysts toward activation of peroxides for aqueous organic pollutants oxidation. Chinese Chemical Letters, 2025, 36(6): 110374-. doi: 10.1016/j.cclet.2024.110374

    18. [18]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    19. [19]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    20. [20]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

Metrics
  • PDF Downloads(19)
  • Abstract views(1074)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return