Citation: Kong Shengnan, Abaid Ullah Malik, Qian Xuefeng, Shu Mouhai, Xiao Wende. C-C Coupling Reactions in Water Catalyzed by Palladium[J]. Chinese Journal of Organic Chemistry, ;2018, 38(2): 432-442. doi: 10.6023/cjoc201709016 shu

C-C Coupling Reactions in Water Catalyzed by Palladium

  • Corresponding author: Shu Mouhai, mhshu@sjtu.edu.cn
  • Received Date: 9 September 2017
    Revised Date: 18 October 2017
    Available Online: 3 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21271129)the National Natural Science Foundation of China 21271129

Figures(6)

  • A microporous organic polymer bearing 2, 2'-bipyridine functional group (MOP-bipy), has been synthesized. After treating with Pd (CH3CN)2Cl2, a composite material Pd/MOP-bipy was obtained. The materials have been characterized by 13C CP/MAS NMR, FT-IR, PXRD, SEM, TEM, nitrogen adsorption and thermogravimetric (TG) techniques. The content and valence of palladium in Pd/MOP-bipy have been determined by ICP and XPS. The composite material Pd/MOP-bipy exhibits excellent catalytic activity for Suzuki-Miyaura reaction in water and Sonogashira coupling reaction in methanol/water. The catalyst can be recycled at least five times without significant loss of the activity.
  • 加载中
    1. [1]

      Trilla, M.; Pleixats, R.; Man, M. W. C.; Bied, C.; Moreau, J. J. E. Adv. Synth. Catal. 2010, 350, 577.

    2. [2]

      Veerakumar, P.; Velayudham, M.; Lu, K. L.; Rajagopal, S. Appl. Catal. A. 2013, 455, 247.  doi: 10.1016/j.apcata.2013.01.021

    3. [3]

      Gogoi, A.; Chutia, S. J.; Gogoi, P. K.; Bora, U. Appl. Organomet. Chem. 2014, 28, 839.  doi: 10.1002/aoc.v28.11

    4. [4]

      Dong, W.; Zhang, L.; Wang, C.; Feng, C.; Shang, N.; Gao, S.; Wang, C. RSC Adv. 2016, 6, 37118.  doi: 10.1039/C6RA00378H

    5. [5]

      He, Y.; Cai, C. J. Organomet. Chem. 2011, 696, 2689.  doi: 10.1016/j.jorganchem.2011.04.012

    6. [6]

      Nasrollahzadeh, M.; Khalaj, M.; Ehsani, A. ChemInform 2014, 55, 5298.

    7. [7]

      Ghorbani-Choghamarani, A.; Tahmasbi, B.; Moradi, P. Appl. Organomet. Chem. 2016, 30, 422.  doi: 10.1002/aoc.v30.6

    8. [8]

      Falher, L. L.; Mumtaz, A.; Nina Diogo, A.; Thorimbert, S.; Botuha, C. Eur. J. Org. Chem. 2017, 4, 827.

    9. [9]

      Wang, T.; Xu, K.; Liu, L.; Xie, H.; Li, Y.; Zhao, W. X. Transition Met. Chem. 2016, 41, 525.  doi: 10.1007/s11243-016-0048-1

    10. [10]

      Llevot, A.; Monney, B.; Sehlinger, A.; Behrens, S.; Meier, M. A. R. Chem. Commun. 2017, 53, 5157.

    11. [11]

      Pasa, S.; Ocak, Y. S.; Temel, H.; Kilicoglu, T. Inorg. Chim. Acta 2013, 405, 493.  doi: 10.1016/j.ica.2013.02.038

    12. [12]

      Das, P.; Sarmah, C.; Tairai, A.; Bora, U. Appl. Organomet. Chem. 2011, 25, 283.  doi: 10.1002/aoc.1755

    13. [13]

      Lundgren, R. J.; Stradiotto, M. Chem. Eur. J. 2012, 18, 9758.  doi: 10.1002/chem.v18.32

    14. [14]

      Zhang, Y. Q.; Wei, X. W.; Yu, R. Catal. Lett. 2010, 135, 256  doi: 10.1007/s10562-010-0293-4

    15. [15]

      Botella, L.; Nájera, C. Angew. Chem., Int. Ed. 2002, 41, 179.  doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5

    16. [16]

      Collins, G.; Schmidt, M.; O'Dwyer, C.; Holmes, J. D.; Mcglacken, G. P. Angew. Chem., Int. Ed. 2014, 53, 4142.  doi: 10.1002/anie.201400483

    17. [17]

      Prechtl, M. H.; Scholten, J. D.; Dupont, J. Molecules 2010, 15, 3441.  doi: 10.3390/molecules15053441

    18. [18]

      Djakovitch, L.; Koehler, K. J. Am. Chem. Soc. 2001, 123, 5990.  doi: 10.1021/ja001087r

    19. [19]

      Köhler, K.; Heidenreich, R. G.; Soomro, S. S.; Pröckl, S. S. Adv. Synth. Catal. 2010, 350, 2930.

    20. [20]

      Kantam, M. L.; Roy, S.; Roy, M.; Sreedhar, B.; Choudary, B. M. Adv. Synth. Catal. 2005, 347, 2002.  doi: 10.1002/(ISSN)1615-4169

    21. [21]

      Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279, 1.  doi: 10.1016/j.jcat.2010.12.003

    22. [22]

      Ramchandani, R. K.; Uphade, B. S.; Vinod, M. P.; Wakharkar, R. D.; Choudhary, V. R. ChemInform 1998, 29, 2071.

    23. [23]

      Wang, Y.; Biradar, A. V.; Duncan, C. T.; Asefa, T. J. Mater. Chem. 2010, 20, 7834.  doi: 10.1039/c0jm01093f

    24. [24]

      Ren, X. M.; Kong, S. N.; Shu, Q. D.; Shu, M. H. Chin. J. Chem. 2016, 34, 373.  doi: 10.1002/cjoc.201500797

    25. [25]

      Li, H.; Xu, B.; Liu, X.; He, A. S. C.; Xia, H.; Mu, Y. J. Mater. Chem. A 2013, 1, 14108.  doi: 10.1039/c3ta13128a

    26. [26]

      You, L. X.; Zhu, W. L.; Wang, S. J.; Xiong, G.; Ding, F.; Ren, B. Y.; Dragutan, I.; Dragutan, V.; Sun, Y. G. Polyhedron 2016, 115, 47.  doi: 10.1016/j.poly.2016.04.032

    27. [27]

      Han, B. H.; Wang, D. Sci. China Chem. 2017, 6, 997.

    28. [28]

      Lu, S.; Jin, Y.; Gu, H.; Zhang, W. Sci. China. Chem. 2017, 60, 999.  doi: 10.1007/s11426-017-9078-7

    29. [29]

      Gang, W.; Fu, Y. -A.; Guo, J. -N.; Xiang, Z. -H. Acta Chim. Sinica 2015, 73, 557(in Chinese).

    30. [30]

      Zhou, B. -L.; Chen, L. Acta Chim. Sinica 2015, 73, 487(in Chinese).

    31. [31]

      Li, Q.; Razzaque, S.; Jin, S.; Tan, B. Sci. China. Chem. 2017, 60, 1056.  doi: 10.1007/s11426-017-9089-3

    32. [32]

      McKeown, N. B. Sci. China Chem. 2017, 60, 1023.  doi: 10.1007/s11426-017-9058-x

    33. [33]

      Huang, N.; Day, G.; Yang, X.; Drake, H.; Zhou, H. C. Sci. China. Chem. 2017, 60, 1007.  doi: 10.1007/s11426-017-9084-7

    34. [34]

      Li, Y. -Q.; Ben, T.; Qiu, S. -L. Acta Chim. Sinica 2015, 73, 605(in Chinese).

    35. [35]

      Liu, G.; Sheng, J.; Zhao, Y. Sci. China Chem. 2017, 60, 1015.

    36. [36]

      Xu, Y.; Zhang, C.; Mu, P.; Mao, N.; Wang, X.; He, Q.; Wang, F.; Jiang, J. X. Sci. China Chem. 2017, 60, 1075.  doi: 10.1007/s11426-017-9077-0

    37. [37]

      Gu, C.; Huang, N.; Chen, Y.; Zhang, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Angew. Chem., Int. Ed. 2016, 55, 3049.  doi: 10.1002/anie.201510723

    38. [38]

      Wang, M.; Guo, L.; Cao, D. Sci. China Chem. 2017, 60, 1090.  doi: 10.1007/s11426-017-9026-x

    39. [39]

      Fang, Z.; Yang, Y. Adv. Mater. Res. 2013, 621, 27.

    40. [40]

      Leadbeater, N. E. Chem. Commun. 2005, 36, 2881.

    41. [41]

      Simon, M. O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415.  doi: 10.1039/C1CS15222J

    42. [42]

      Paul, S.; Islam, M. M.; Islam, S. M. RSC Adv. 2015, 5, 42193.  doi: 10.1039/C4RA17308B

    43. [43]

      Cheng, X.; Li, W.; Nie, R.; Ma, X.; Sang, R.; Guo, L.; Wu, Y. Adv. Synth. Catal. 2017, 359, 454.  doi: 10.1002/adsc.201600815

    44. [44]

      Zdravkov, A. B.; Khimich, N. N. Russ. J. Org. Chem. 2006, 42, 1200.  doi: 10.1134/S1070428006080161

    45. [45]

      Zhao, Y.; Li, J.; Li, C.; Yin, K.; Ye, D.; Jia, X. ChemInform 2010, 12, 1370.

    46. [46]

      Li, Q.; Zhang, L. M.; Bao, J. J.; Li, H. X.; Xie, J. B.; Lang, J. P. Appl. Organomet. Chem. 2014, 28, 861.  doi: 10.1002/aoc.v28.12

    47. [47]

      Khatyr, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7814.  doi: 10.1021/jo000836k

    48. [48]

      Li, B.; Guan, Z.; Yang, X.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K.; Tan, B.; Li, T. J. Mater. Chem. A 2014, 2, 11930.  doi: 10.1039/C4TA01081G

    49. [49]

      Wang, C. A.; Han, Y. F.; Li, Y. W.; Nie, K.; Cheng, X. L.; Zhang, J. P. RSC Adv. 2016, 6, 34866.  doi: 10.1039/C6RA03331H

    50. [50]

      Liu, B.; Gong, Z. L; Yao, S. W.; Guo, H. T.; Yuan, H. T.; Zhang, Y. S. Chin. J. Appl. Chem. 1999, 16, 80.

    51. [51]

      Kibis, L. S.; Titkov, A. I.; Stadnichenko, A. I.; Koscheev, S. V.; Boronin, A. I. Appl. Surf. Sci. 2009, 255, 9248.  doi: 10.1016/j.apsusc.2009.07.011

    52. [52]

      Zdravkov, A. V., ; Koptelova, L. A.; Novikov, A. V.; Khimich, N. N. Russ. J. Gen. Chem. 2008, 78, 1938.  doi: 10.1134/S1070363208100204

    53. [53]

      Grosshenny, V.; Romero, F. M.; Ziessel, R. J. Org. Chem. 1997, 28, 1491.

    54. [54]

      Hua, S. K.; Hu, Q. P.; Ren, J.; Zeng, B. B. ChemInform 2013, 44, 518.

    55. [55]

      Cívicos, J. F.; Alonso, D. A.; Nájera, C. J. Org. Chem. 2012, 2012, 3670.

    56. [56]

      Zim, D.; Gruber, A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L. ChemInform 2000, 2, 2881.

    57. [57]

      Wang, H.; Wang, J.; Qiu, W.; Fan, Y.; Liu, X.; Jie, T. Chin. J. Chem. 2010, 28, 2416.  doi: 10.1002/cjoc.v28.12

    58. [58]

      Liu, J. B.; Zhou, H. P.; Peng, Y. Y. RSC Adv. 2014, 55, 2872.

    59. [59]

      Korenaga, T.; Nitatori, K.; Muraoka, H.; Ogawa, S.; Shimada, K. Org. Lett. 2015, 17, 5500.  doi: 10.1021/acs.orglett.5b02887

    60. [60]

      Peng, L.; Xu, F.; Suzuma, Y.; Orita, A.; Otera, J. ChemInform 2013, 78, 12802.

    61. [61]

      Thankachan, A. P.; Sindhu, K. S.; Krishnan, K. K.; Anilkumar, G. Tetrahedron Lett. 2016, 47, 5525.

    62. [62]

      Srinivas Reddy, A.; Laali, K. K. Tetrahedron Lett. 2015, 56, 4807.  doi: 10.1016/j.tetlet.2015.06.067

    63. [63]

      Vaccaro, L.; Strappaveccia, G.; Marrocchi, A.; Pizzo, F.; Luciani, L.; Bartollini, E. Green Chem. 2015, 17, 1071.  doi: 10.1039/C4GC01728E

    64. [64]

      Yu, L.; Han, Z.; Ding, Y. Org. Process Res. Dev. 2016, 20, 2124.  doi: 10.1021/acs.oprd.6b00322

    65. [65]

      Landarani Isfahani, A.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Khosropour, A. R.; Moghadam, M.; Tangestaninejad, S. J. Org. Chem. 2015, 2014, 5603.

    66. [66]

      Peng, H.; Chen, Y. Q.; Mao, S. L.; Pi, Y. X.; Chen, Y.; Lian, Z. Y.; Meng, T.; Liu, S. H.; Yu, G. A. Org. Biomol. Chem. 2014, 12, 6944.  doi: 10.1039/C4OB00846D

    67. [67]

      Chang, F.; Liu, Y. P. Synth. Commum. 2017, 47, 961.  doi: 10.1080/00397911.2017.1297457

    68. [68]

      Severin, R.; Reimer, J.; Doye, S. J. Org. Chem. 2010, 75, 3518.  doi: 10.1021/jo100460v

    69. [69]

      Mino, T.; Shirae, Y.; Saito, T.; Sakamoto, M.; Fujita, T. ChemInform 2007, 38, 9499.

    70. [70]

      Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. ChemInform 2014, 45, 2029.

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Fuyang YueMingxing LiFei YuanHongjian SongYuxiu LiuQingmin Wang . Deboronative cross-coupling enabled by nickel metallaphotoredox catalysis. Chinese Chemical Letters, 2025, 36(12): 111053-. doi: 10.1016/j.cclet.2025.111053

    3. [3]

      Pengfu Gao Yuan Geng Wei Gong . Homochiral metal-organic frameworks bearing privileged ligands for heterogeneous asymmetric catalysis. Chinese Journal of Structural Chemistry, 2025, 44(10): 100719-100719. doi: 10.1016/j.cjsc.2025.100719

    4. [4]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    7. [7]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    8. [8]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    9. [9]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    10. [10]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    11. [11]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    16. [16]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    17. [17]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    18. [18]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    19. [19]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    20. [20]

      Junlong TangYuhan ZhaoYangbin JinLiren ZhangYuanfang WangWanqing WuHuanfeng Jiang . Palladium-catalyzed modular biomimetic synthesis of lignans derivatives. Chinese Chemical Letters, 2025, 36(7): 110969-. doi: 10.1016/j.cclet.2025.110969

Metrics
  • PDF Downloads(12)
  • Abstract views(1660)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return