Citation: Tian Yajuan, Cai Ning, Chen Yatong, Qian Sainan, Huo Yanping. Dye-Sensitized Solar Cells: Progress on Robust Anchor Groups in Dyes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1085-1106. doi: 10.6023/cjoc201709014 shu

Dye-Sensitized Solar Cells: Progress on Robust Anchor Groups in Dyes

  • Corresponding author: Cai Ning, ning.cai@gdut.edu.cn Huo Yanping, organicteacherhuo@126.com
  • Received Date: 8 September 2017
    Revised Date: 16 November 2017
    Available Online: 8 May 2017

    Fund Project: Project supported by the Natural Science Foundation of Guangdong Province (No. 2017A030310039), the National Natural Science Foundation of China (Nos. 61671162, 21372051) and the Science and Technology Planning Project of Guangdong Province (No. 2016A010103031)the National Natural Science Foundation of China 21372051the National Natural Science Foundation of China 61671162the Natural Science Foundation of Guangdong Province 2017A030310039the Science and Technology Planning Project of Guangdong Province 2016A010103031

Figures(2)

  • As a type of potential photovoltaic device, dye-sensitized solar cells (DSSCs) have attracted tremendous attention due to its high cost-effective and simple manufacturing process. In the device, dye molecules attach on the metal oxide surface via chemical bonds between anchor substituents and metal oxide substrate, realizing the light harvesting and photoelectron injection. Traditionally, carboxylic acids, such as benzoic acid and cyanoacrylic acid groups, have been widely utilized as the anchor groups in DSSCs. However, the detachment of dye molecules from metal oxide surface during device operation and consequent long-term stability issues cannot be ignored. Therefore, in view of durability of DSSCs in practical application, various anchor groups with a better ability to graft on the metal oxide have been explored. Several robust anchor groups in recent years and corresponding photovoltaic parameters are reviewed and the relationship between molecular structures and device performance is also discussed. The research progress of anchoring groups in photocatalytic hydrogen and quantum dot sensitized solar cells (QDSSCs) is also examined.
  • 加载中
    1. [1]

      Sorensen, B. Renewable Energy, 1st ed, Academic Press, London, 1979.

    2. [2]

      O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  doi: 10.1038/353737a0

    3. [3]

      Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  doi: 10.1126/science.1209688

    4. [4]

      (a) Wang, Y. ; Chen, B. ; Wu, W. ; Li, X. ; Zhu, W. ; Tian, H. ; Xie, Y. Angew. Chem., Int. Ed. 2014, 53, 10779.
      (b) Wei, T. ; Sun, X. ; Li, X. ; Ågren, H. ; Xie, Y. ACS Appl. Mater. Interfaces 2015, 39, 21956.
      (c) Xie, Y. ; Tang, Y. ; Wu, W. ; Wang, Y. ; Liu, J. ; Liu, X. ; Tian, H. ; Zhu, W. J. Am. Chem. Soc. 2015, 44. 14055.
      (d) Tang, Y. ; Wang, Y. ; Li, X. ; Ågren, H. ; Zhu, W. ; Xie, Y. ACS Appl. Mater. Interfaces 2015, 50, 27976.
      (e) Song, H. ; Li, X. ; Ågren, H. ; Xie, Y. Dyes Pigm. 2017, 137, 421.

    5. [5]

      (a) Yang, H. W. ; Guan, J. J. ; Gao, F. X. ; He, X. P. ; Wang, A. ; Sun, B. D. ; Zhang, X. Q. ; Zhang, B. ; Feng, Y. Q. Chin. J. Org. Chem. 2015, 35, 2237(in Chinese).
      (杨贺玮, 官俊杰, 高峰贤, 何欣平, 王安, 孙宝德, 张学强, 张宝, 冯亚青, 有机化学, 2015, 35, 2237. )
      (b) Zhou, D. ; Cai, N. ; Long, H. ; Zhang, M. ; Wang, Y. ; Wang, P. J. Phys. Chem. C 2011, 115, 3163.
      (c) Xu, M. ; Zhou, D. ; Cai, N. ; Liu, J. ; Li, R. ; Wang, P. Energy Environ. Sci. 2011, 4, 4735.
      (d) Li, R. ; Liu, J. ; Cai, N. ; Zhang, M. ; Wang, P. J. Phys. Chem. B 2010, 114, 4461.
      (e) Cai, N. ; Moon, S. J. ; Cevey-Ha, L. ; Moehl, T. ; Humphry-Baker, R. ; Wang, P. ; Zakeeruddin, S. M. ; Grätzel, M. Nano Lett. 2011, 11, 1452.

    6. [6]

      (a) Cao, Y. ; Cai, N. ; Wang, Y. ; Li, R. ; Yuan, Y. ; Wang, P. Phys. Chem. Chem. Phys. 2012, 14, 8282.
      (b) Cai, N. ; Zhang, J. ; Xu, M. ; Zhang, M. ; Wang, P. Adv. Funct. Mater. 2013, 23, 3539.
      (c) Cai, N. ; Wang, Y. ; Xu, M. ; Fan, Y. ; Li, R. ; Zhang, M. ; Wang, P. Adv. Funct. Mater. 2013, 23, 1846.
      (d) Cai, N. ; Li, R. ; Wang, Y. ; Zhang, M. ; Wang, P. Energy Environ. Sci. 2013, 6, 139.

    7. [7]

      Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 177, 347.  doi: 10.1016/S0010-8545(98)00189-1

    8. [8]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242.  doi: 10.1038/nchem.1861

    9. [9]

      Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  doi: 10.1021/cr900356p

    10. [10]

      Galoppini, E. Coord. Chem. Rev. 2004, 248, 1283.  doi: 10.1016/j.ccr.2004.03.016

    11. [11]

      Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. J. Chem. Soc. Chem. Commun. 1995, 65.

    12. [12]

      Park, H.; Bae, E.; Lee, J. J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740.  doi: 10.1021/jp060397e

    13. [13]

      Odobel, F.; Blart, E.; Lagree, M.; Villieras, M.; Boujtita, H.; EĺMurr, N.; Caramori, S.; Alberto Bignozzi, C. J. Mater. Chem. 2003, 13, 502.  doi: 10.1039/b210674d

    14. [14]

      Lopez-Duarte, I.; Wang, M.; Humphry-Baker, R.; Ince, M.; Martínez-Díaz, M. V.; Nazeeruddin, M. K.; Torres, T.; Grätzel, M. Angew. Chem., Int. Ed. 2012, 51, 1895.  doi: 10.1002/anie.v51.8

    15. [15]

      Mulhern, K. R.; Orchard, A.; Watson, D. F.; Detty, M. R. Langmuir 2012, 28, 7071.  doi: 10.1021/la300668k

    16. [16]

      Brown, D. G.; Schauer, P. A.; Borau-Garcia, J.; Fancy, B. R.; Berlinguette, C. P. J. Am. Chem. Soc. 2013, 135, 1692.  doi: 10.1021/ja310965h

    17. [17]

      He, H.; Gurunga, A.; Si, L. Chem. Commun. 2012, 48, 5910.  doi: 10.1039/c2cc31440a

    18. [18]

      Si, L.; He, H.; Zhu, K. New J. Chem. 2014, 38, 1565.  doi: 10.1039/c3nj01643a

    19. [19]

      Mao, J.; He, N.; Ning, Z.; Zhang, Q.; Guo, F.; Chen, L.; Wu, W.; Hua, J.; Tian, H. Angew. Chem., Int. Ed. 2012, 51, 9873.  doi: 10.1002/anie.201204948

    20. [20]

      Zhang, J.; Li, H.-B.; Zhang, J.-Z.; Wu, Y.; Geng, Y.; Fu, Q.; Su, Z.-M. J. Mater. Chem. A 2013, 1, 14000.  doi: 10.1039/c3ta12311a

    21. [21]

      Mao, J.; Zhang, X.; Liu, S.-H.; Shen, Z.; Li, X.; Wu, W.; Chou, P.-T.; Hua, J. Electrochim. Acta 2015, 179, 179.  doi: 10.1016/j.electacta.2015.05.003

    22. [22]

      Matsui, M.; Tanaka, N.; Kubota, Y.; Funabiki, K.; Jin, J.; Higashijima, S.; Miura, H.; Manseki, K. RSC Adv. 2016, 6, 33111.  doi: 10.1039/C5RA23623A

    23. [23]

      Qian, X.; Yan, R.; Hang, Y.; Lv, Y.; Zheng, L.; Xu, C.; Hou, L. Dyes Pigm. 2017, 139, 274.  doi: 10.1016/j.dyepig.2016.12.028

    24. [24]

      Qian, X.; Lan, X.; Yan, R.; He, Y.; Huang, J.; Hou, L. Electrochim. Acta 2017, 232, 377.  doi: 10.1016/j.electacta.2017.02.166

    25. [25]

      Yu, F.; Cui, S.-C.; Li, X.; Peng, Y.; Yu, Y.; Kang, Y.; Zhang, S.-C.; Li, J.; Liu, J.-G.; Hua, J. Dyes Pigm. 2017, 139, 7.  doi: 10.1016/j.dyepig.2016.12.013

    26. [26]

      Horiuchi, T.; Miuraa, H.; Uchida, S. Chem. Commun. 2003, 3036.

    27. [27]

      Horiuchi, T.; Miura, H.; Uchida, S. J. Photochem. Photobiol., A Chem. 2004, 164, 29.  doi: 10.1016/j.jphotochem.2003.12.018

    28. [28]

      Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.  doi: 10.1021/ja0488277

    29. [29]

      Chen, Y.; Li, C.; Zeng, Z.; Wang, W.; Wang, X.; Zhang, B. Chem. Lett. 2005, 6, 762.

    30. [30]

      Li, S.-L.; Jiang, K.-J.; Shao, K.-F.; Yang, L.-M. Chem. Commun. 2006, 2792.

    31. [31]

      Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. Chem. Commun. 2007, 3741.

    32. [32]

      Liang, M.; Xu, W.; Cai, F.; Chen, P.; Peng, B.; Chen, J.; Li, Z. J. Phys. Chem. C 2007, 111, 4465.  doi: 10.1021/jp067930a

    33. [33]

      Tian, H.; Yang, X.; Pan, J.; Chen, R.; Liu, M.; Zhang, Q.; Hagfeldt, A.; Sun, L. Adv. Funct. Mater. 2008, 18, 3461.  doi: 10.1002/adfm.v18:21

    34. [34]

      Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008, 5194.

    35. [35]

      Zhang, X.-H.; Yao, Y.-S.; Li, C.; Wang, W.-B.; Cheng, X.-X.; Wang, X.-S.; Zhang, B.-W. Chin. J. Chem. 2008, 26, 929.  doi: 10.1002/cjoc.200890170

    36. [36]

      Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.; Johansson, E. M. J.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L.; Hagfeldt, A. Phys. Chem. Chem. Phys. 2009, 11, 133.  doi: 10.1039/B812154K

    37. [37]

      Pei, J.; Peng, S.; Shi, J.; Liang, Y.; Tao, Z.; Liang, J.; Chen, J. J. Power Sources 2009, 187, 620.  doi: 10.1016/j.jpowsour.2008.11.028

    38. [38]

      Ahn, H. J.; Thogiti, S.; Cho, J. M.; Jang, B. Y.; Kim, J. H. Electron. Mater. Lett. 2015, 5, 882.

    39. [39]

      Gupta, K. S. V.; Singh, S. P.; Islam, A.; Han, L.; Chandrasekharam, M. Electrochim. Acta 2015, 174, 581.  doi: 10.1016/j.electacta.2015.05.158

    40. [40]

      Kathiravan, A.; Panneerselvam, M.; Sundaravel, K.; Pavithra, N.; Srinivasan, V.; Anandand, S.; Jaccob, M. Phys. Chem. Chem. Phys. 2016, 18, 13332.  doi: 10.1039/C6CP00571C

    41. [41]

      Kathiravan, A.; Srinivasan, V.; Khamrang, T.; Velusamy, M.; Jaccob, M.; Pavithra, N.; Anandane, S.; Velappan, K. Phys. Chem. Chem. Phys. 2017, 19, 3125.  doi: 10.1039/C6CP08180K

    42. [42]

      Hai, N. T.; Bao, L. Q.; Thogiti, S.; Cheruku, R.; Ahn, K.-S.; Kim, J. H. J. Nanosci. Nanotechnol. 2017, 5, 3181.

    43. [43]

      Ooyama, Y.; Inoue, S.; Nagano, T.; Kushimoto, K.; Ohshita, J.; Imae, I.; Komaguchi, K.; Harima, Y. Angew. Chem., Int. Ed. 2011, 50, 7429.  doi: 10.1002/anie.v50.32

    44. [44]

      Ooyama, Y.; Nagano, T.; Inoue, S.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Chem.-Eur. J. 2011, 17, 14837.  doi: 10.1002/chem.201101923

    45. [45]

      Zhang, M.-D.; Xie, H.-X.; Ju, X.-H.; Qin, L.; Yang, Q.-X.; Zheng, H.-G.; Zhou, X.-F. Phys. Chem. Chem. Phys. 2013, 15, 634.  doi: 10.1039/C2CP42993D

    46. [46]

      Ooyama, Y.; Yamaguchi, N.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Chem. Commun. 2013, 49, 2548.  doi: 10.1039/c3cc40498f

    47. [47]

      Wang, L.; Yang, X.; Li, S.; Cheng, M.; Sun, L. RSC Adv. 2013, 3, 13677.  doi: 10.1039/c3ra41182f

    48. [48]

      Wang, L.; Yang, X.; Zhao, J.; Zhang, F.; Wang, X.; Sun, L. ChemSusChem 2014, 7, 2640.  doi: 10.1002/cssc.201402208

    49. [49]

      Mao, J.; Wang, D.; Liu, S.-H.; Hang, Y.; Xu, Y.; Zhang, Q.; Wu, W.; Chou, P.-T.; Hua, J. Asian J. Org. Chem. 2014, 3, 153.  doi: 10.1002/ajoc.v3.2

    50. [50]

      (a) Cong, J. ; Yang, X. ; Liu, J. ; Zhao, J. ; Hao, Y. ; Wang, Y. ; Sun, L. Chem. Commun. 2012, 48, 6663.
      (b) Ooyama, Y. ; Hagiwara, Y. ; Oda, Y. ; Mizumo, T. ; Harima, Y. ; Ohshita, J. New J. Chem. 2013, 37, 2336.

    51. [51]

      Massin, J.; Ducasse, L.; Toupance, T.; Olivier, C. J. Phys. Chem. C 2014, 118, 10677.  doi: 10.1021/jp502488g

    52. [52]

      Zhang, L.; Cole, J. M.; Dai, C. Appl. Mater. Interfaces 2014, 6, 7535.  doi: 10.1021/am502186k

    53. [53]

      Daphnomili, D.; Landrou, G.; Prakash Singh, S.; Thomas, A.; Yesudas, K.; Bhanuprakash, K.; Sharma, G. D.; Coutsolelos, A. G. RSC Adv. 2012, 2, 12899.  doi: 10.1039/c2ra22129b

    54. [54]

      Daphnomili, D.; Sharma, G. D.; Biswas, S.; Justin Thomas, K. R.; Coutsolelos, A. G. J. Photochem. Photobiol., A:Chem. 2013, 253, 88.  doi: 10.1016/j.jphotochem.2012.12.013

    55. [55]

      Mai, C.-L.; Moehl, T.; Hsieh, C.-H.; Decoppet, J. D.; Zakeeruddin, S. M.; Grätzel, M.; Yeh, C. Y. ACS Appl. Mater. Interfaces 2015, 7, 14975.  doi: 10.1021/acsami.5b03783

    56. [56]

      Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R. Org. Lett. 2016, 18, 3386.  doi: 10.1021/acs.orglett.6b01539

    57. [57]

      Asao, T.; Kikuchi, Y. Chem. Lett. 1972, 413.
       

    58. [58]

      Barret, M. C.; Mahon, M. F.; Molloy, K. C.; Steed, J. W.; Wright, P. Inorg. Chem. 2001, 40, 4384.  doi: 10.1021/ic0100368

    59. [59]

      Nomiya, K.; Onodera, K.; Sukagoshi, K.; Shimada, K.; Yoshizawa, A.; Itoyanagi, T. A.; Sugie, A.; Tsuruta, S.; Sato, R.; Kasuga, N. C. Inorg. Chim. Acta 2009, 362, 43.  doi: 10.1016/j.ica.2008.02.061

    60. [60]

      Higashino, T.; Fujimori, Y.; Sugiura, K.; Tsuji, Y.; Ito, S.; Imahori, H. Angew. Chem., Int. Ed. 2015, 54, 9052.  doi: 10.1002/anie.201502951

    61. [61]

      Cocozza, C.; Tsao, C. C. G.; Cheah, S. F.; Kraemer, S. M.; Raymond, K. N.; Miano, T. M.; Sposito, G. Geochim. Cosmochim. Acta 2002, 66, 431.  doi: 10.1016/S0016-7037(01)00780-3

    62. [62]

      Yang, J.; Bremer, P. J.; Lamont, I. L.; McQuillan, A. J. Langmuir 2006, 22, 10109.  doi: 10.1021/la061365l

    63. [63]

      Upritchard, H. G.; Yang, J.; Bremer, P. J.; Lamont, I. L.; McQuillan, A. J. Langmuir 2007, 23, 7189.  doi: 10.1021/la7004024

    64. [64]

      McNamara, W. R.; Snoeberger Ⅲ, R. C.; Li, G.; Richter, C.; Allen, L. J.; Milot, R. L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. Energy Environ. Sci. 2009, 2, 1173.  doi: 10.1039/b910241h

    65. [65]

      McNamara, W. R.; Milot, R. L.; Song, H.; Snoeberger, R. C.; Batista, V. S.; Schmuttenmaer, C. A.; Brudvig, G. W.; Crabtree, R. H. Energy Environ. Sci. 2010, 3, 917.  doi: 10.1039/c001065k

    66. [66]

      Brewster, T. P.; Konezny, S. J.; Sheehan, S. W.; Martini, L. A.; Schmuttenmaer, C. A.; Batista, V. S.; Crabtree, R. H. Inorg. Chem. 2013, 52, 6752.  doi: 10.1021/ic4010856

    67. [67]

      Koenigsmann, C.; Ripolles, T. S.; Brennan, B. J.; Negre, C. F. A.; Koepf, M.; Durrell, A. C.; Milot, R. L.; Torre, J. A.; Crabtree, R. H.; Batista, V. S.; Brudvig, G.; Bisquert, J.; Schmuttenmaer, C. Phys. Chem. Chem. Phys. 2014, 16, 16629.  doi: 10.1039/C4CP02405B

    68. [68]

      Brennan, B. J.; Koenigsmann, C.; Materna, K. L.; Kim, P. M.; Koepf, M.; Crabtree, R. H.; Schmuttenmaer, C. A.; Brudvig, G. W. J. Phys. Chem. C 2016, 23, 12495.

    69. [69]

      Bowman, D. N.; Mukherjee, S.; Barnes, L. J.; Jakubikova, E. J. Phys.:Condens. Matter. 2015, 27, 134205.  doi: 10.1088/0953-8984/27/13/134205

    70. [70]

      Higashino, T.; Kurumisawa, Y.; Cai, N.; Fujimori, Y.; Tsuji, Y.; Nimura, S.; Packwood, D.; Jaehong Park, J.; Imahori, H. ChemSusChem 2017, 10, 3347.  doi: 10.1002/cssc.201701157

    71. [71]

      Politano, A.; Cattelan, M.; Boukhvalov, D. W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N. G.; Lacovig, P.; Lizzit, S.; Farías, D.; Chiarello, G.; Granozzi, G.; Larciprete, R. ACS Nano 2016, 10, 4543.  doi: 10.1021/acsnano.6b00554

    72. [72]

      Tsuji, K.; Tomita, O.; Higashi, M.; Abe, R. ChemSusChem 2016, 9, 2201.  doi: 10.1002/cssc.201600563

    73. [73]

      Zhang, Y.; Sun, Z.; Cheng, S.; Yan, F. ChemSusChem 2016, 9, 813.  doi: 10.1002/cssc.201600110

    74. [74]

      Kim, H. G.; Borse, P. H.; Choi, W.; Choi, W.; Lee, J. S. Angew. Chem., Int. Ed. 2005, 44, 4585.  doi: 10.1002/(ISSN)1521-3773

    75. [75]

      Zhang, X.; Peng, T.; Song, S. J. Mater. Chem. A 2016, 4, 2365.  doi: 10.1039/C5TA08939E

    76. [76]

      Fan, K.; Li, F. S.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. Phys. Chem. Chem. Phys. 2014, 16, 25234.  doi: 10.1039/C4CP04489D

    77. [77]

      Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. J. Am. Chem. Soc. 2015, 137, 9153.  doi: 10.1021/jacs.5b04856

    78. [78]

      Li, X.; Hu, Y.; Sanchez-Molina, I.; Zhou, Y.; Yu, F.; Haque, S. A.; Wu, W.; Hua, J.; Tian, H.; Robertson, N. J. Mater. Chem. A 2015, 3, 21733.  doi: 10.1039/C5TA07254A

    79. [79]

      Rao, C. N. R.; Lingampalli, S. R. Small 2016, 12, 16.  doi: 10.1002/smll.201500420

    80. [80]

      Manfredi, N.; Cecconi, B.; Calabrese, V.; Minotti, A.; Peri, F.; Ruffo, R.; Monai, M.; Romero-Ocaña, I.; Montini, T.; Fornasiero, P.; Abbotto, A. Chem. Commun. 2016, 52, 6977.  doi: 10.1039/C6CC00390G

    81. [81]

      Maeda, K.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E. Chem Mater. 2008, 20, 6770.  doi: 10.1021/cm801807b

    82. [82]

      Bae, E. Y.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093.  doi: 10.1021/jp047777p

    83. [83]

      Yu, F.; Cui, S.-C.; Li, X.; Peng, Y.; Yu, Y.; Yun, K.; Zhang, S.-C.; Li, J.; Liu, J.-G.; Hua, J. Dyes Pigm. 2017, 139, 7.  doi: 10.1016/j.dyepig.2016.12.013

    84. [84]

      Guerrero, G.; Alauzun, J. G.; Granier, M.; Laurencin, D.; Mutin, P. H. Dalton Trans. 2013, 42, 12569.  doi: 10.1039/c3dt51193f

    85. [85]

      Baker, D. R.; Kamat, P. V. Adv. Funct. Mater. 2009, 19, 805.  doi: 10.1002/adfm.v19:5

    86. [86]

      Meng, Q. B. Acta Chim. Sinica 2015, 73, 161(in Chinese).
       

    87. [87]

      Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.  doi: 10.1021/ja056494n

    88. [88]

      Ardalan, P.; Brennan, T. P.; Lee, H. B. R.; Bakke, J. R.; Ding, I. K.; McGehee, M. D.; Bent, S. F. ACS Nano 2011, 5, 1495.  doi: 10.1021/nn103371v

    89. [89]

      Yu, L.; Li, Z.; Song, H. J. Mater. Sci.:Mater. Electron. 2017, 28, 2867.  doi: 10.1007/s10854-016-5871-9

    90. [90]

      Mora-Seró, I.; Giménez, S.; Moehl, T.; Fabregat-Santiago, F.; Lana-Villareal, T.; Gómez, R.; Bisquert, J. Nanotechnology 2008, 19, 424007.  doi: 10.1088/0957-4484/19/42/424007

  • 加载中
    1. [1]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    12. [12]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    15. [15]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    16. [16]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    17. [17]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(13)
  • Abstract views(2183)
  • HTML views(249)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return