Citation: Hui Renjie, Zhang Shiwei, Tan Zheng, Wu Xiaopei, Feng Bainian. Research Progress of Trifluoromethylation with Sodium Trifluoromethanesulfinate[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3060-3075. doi: 10.6023/cjoc201709011 shu

Research Progress of Trifluoromethylation with Sodium Trifluoromethanesulfinate

  • Corresponding author: Feng Bainian, fengbainian@jiangnan.edu.cn
  • Received Date: 8 September 2017
    Revised Date: 9 November 2017
    Available Online: 8 December 2017

    Fund Project: Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20140136) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015B146)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions PPZY2015B146the Natural Science Foundation of Jiangsu Province BK20140136

Figures(39)

  • Trifluoromethyl can increase the chemical and metabolic stability of drugs, improve its lipophilicity and bioavailability, and furthermore, enhance drug binding selectivities. Sodium trifluoromethanesulfinate (CF3SO2Na) is a stable inexpensive reagent, which has been widely used in the field of organic fluorine chemistry. The recent progress (2014~2017) in trifluoromethylation by employing CF3SO2Na as the trifluoromethyl source is summarized. In addition, the reactions of bifunctionalization, trifluoromethylation of aromatics, trifluoromethylthioization and other types of reactions are described respectively, with their applications and reaction mechanism. It is hoped that this review can be referred to in the studies of trifluoromethyl introduction.
  • 加载中
    1. [1]

      Grem J. L. Invest. New Drugs 2000, 18, 299  doi: 10.1023/A:1006416410198

    2. [2]

      Krik, K. L. Org. Process Res. Dev. 2008, 12, 305  doi: 10.1021/op700134j

    3. [3]

      Yang, B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 1906.  doi: 10.1021/acs.orglett.5b00601

    4. [4]

      Liu, X.; Xu, C.; Wang, M. Chem. Rev. 2015, 115, 683.  doi: 10.1021/cr400473a

    5. [5]

      Yang, F.; Klumphu, P.; Liang, Y. M. Chem. Commun. 2014, 50, 936.  doi: 10.1039/C3CC48131J

    6. [6]

      Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.  doi: 10.1073/pnas.1109059108

    7. [7]

      Umemoto, T. Chem. Rev. 1996, 96, 1757.  doi: 10.1021/cr941149u

    8. [8]

      Eisenberger, P.; Gischig, S.; Togni, A. Chemistry 2006, 12, 2579.  doi: 10.1002/(ISSN)1521-3765

    9. [9]

      Ryota, H.; Toshiaki, I.; Kohsuke, A. Chemistry 2014, 20, 2750.  doi: 10.1002/chem.v20.10

    10. [10]

      Morimoto, H.; Tsubogo, T.; Litvinas, N. D. Angew Chem., Int. Ed. 2011, 50, 3793.  doi: 10.1002/anie.v50.16

    11. [11]

      Tomashenko, O. A.; Escudero, A. E. C.; Martínez, B. M. Angew Chem., Int. Ed. 2011, 50, 7655.  doi: 10.1002/anie.201101577

    12. [12]

      Zheng, J.; Lin, J. H.; Deng, X. Y. Org. Lett. 2015, 17, 532.  doi: 10.1021/ol503548s

    13. [13]

      Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.  doi: 10.1021/ol502071g

    14. [14]

      (a) Lefebvre, Q. Synlett 2016, 28, 19.
      (b) Tordeux, M.; Langlois, B. R.; Wakselman, C. J. Org. Chem. 1989, 54, 2452.

    15. [15]

      Zhang, C. Adv. Synth. Catal. 2014, 356, 2895.  doi: 10.1002/adsc.201400370

    16. [16]

      Lu, Y.; Li, Y.; Zhang, R. J. Fluorine Chem. 2014, 161, 128.  doi: 10.1016/j.jfluchem.2014.01.020

    17. [17]

      Hang, Z.; Li, Z.; Liu, Z. Q. Org. Lett. 2014, 16, 3648.  doi: 10.1021/ol501380e

    18. [18]

      Zhu, L.; Wang, L. S.; Li, B. Chem. Commun. 2016, 52, 6371.  doi: 10.1039/C6CC01944G

    19. [19]

      Yang, B.; Xu, X. H.; Qing, F. L. Chin. J. Chem. 2016, 34, 465.  doi: 10.1002/cjoc.201500641

    20. [20]

      Yang, Y.; Liu, Y.; Jiang, Y.; Zhang, Y.; Vicic, D. A. J. Org. Chem. 2015, 80, 6639.  doi: 10.1021/acs.joc.5b00781

    21. [21]

      Yang, B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 1906.  doi: 10.1021/acs.orglett.5b00601

    22. [22]

      Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.  doi: 10.1002/anie.201302673

    23. [23]

      Chen, Z. M.; Bai, W.; Wang, S. H.; Yang, B. M.; Tu, Y. Q.; Zhang, F. M. Angew. Chem., Int. Ed. 2013, 52, 9781.  doi: 10.1002/anie.201304557

    24. [24]

      Egami, X.; Shimizu, R.; Usuiac, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.  doi: 10.1039/c3cc43936d

    25. [25]

      Huang, H. L.; Yan, H.; Gao, G. L. Asian J. Org. Chem. 2015, 4, 674.  doi: 10.1002/ajoc.201500096

    26. [26]

      Lu, Q.; Liu, C.; Huang, Z. Chem. Commun. 2014, 50, 14101.  doi: 10.1039/C4CC06328G

    27. [27]

      Liu, C.; Lu, Q.; Huang, Z. Org. Lett. 2015, 17, 6034.  doi: 10.1021/acs.orglett.5b03035

    28. [28]

      Li, B.; Fan, D.; Yang C; Xia W. Org. Biomol. Chem. 2016, 14, 5293.  doi: 10.1039/C6OB00912C

    29. [29]

      Yu, J.; Yang, H.; Fu, H. Adv. Synth. Catal. 2014, 356, 3669.  doi: 10.1002/adsc.v356.17

    30. [30]

      Mu, X.; Wu, T.; Wang, H. Y.; Guo, Y. L.; Liu, G. S. J. Am. Chem. Soc. 2012, 134, 878.  doi: 10.1021/ja210614y

    31. [31]

      Wei, W.; Wen, J.; Yang, D. J. Org. Chem. 2014, 79, 4225.  doi: 10.1021/jo500515x

    32. [32]

      Hua, H. L.; He, Y. T.; Qiu, Y. F. Chem.-Eur. J. 2015, 21, 1468.  doi: 10.1002/chem.201405672

    33. [33]

      Zhang, L. Z.; Li, Z. J.; Liu, Z. Q. Cheminform 2014, 46, 3648.

    34. [34]

      Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.  doi: 10.1039/C7SC02556D

    35. [35]

      Wu, L. H.; Zhao, K.; Shen, Z. L.; Loh, T. P. Org. Chem. Front. 2017, 4, 1872.  doi: 10.1039/C7QO00416H

    36. [36]

      Martin, R.; Reddy, Y. V.; Shen, Y. Angew. Chem., Int. Ed. 2017, 56, 10915.  doi: 10.1002/anie.201706263

    37. [37]

      Zhang, X.; Huang, P.; Li, Y. Org. Biomol. Chem. 2015, 13, 10917.  doi: 10.1039/C5OB01516B

    38. [38]

      Zhang, K.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2015, 80, 7658.  doi: 10.1021/acs.joc.5b01295

    39. [39]

      Wu, M.; Ji, X.; Dai, W. J. Org. Chem. 2014, 79, 8984.  doi: 10.1021/jo501221h

    40. [40]

      (a) Cai, S. J.; Chen, C.; Sun, Z. L.; Xi, C. J. Chem. Commun. 2013, 49, 4552.
      (b) Zhang, L. S.; Chen, K.; Chen, G. H.; Li, B. J.; Luo, S.; Guo, Q. Y.; Wei, J. B.; Shi, Z. J. Org. Lett. 2013, 15, 10.

    41. [41]

      Ji, X. M.; Wei, L.; Chen, F. RSC Adv. 2015, 46, 29766.

    42. [42]

      (a) Cho, E. J.; Senecal, T. D.; Kinzel, T. Y.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
      (b) Oishi, M.; Kondo H.; Amii, H. Chem. Commun. 2009, 1909.
      (c) Chu, L.; Qing, F. L. Org. Lett. 2010, 12, 5060.
      (d) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174.
      (e) Jiang, X.; Chu, L.; Qing, F. L. J. Org. Chem. 2012, 77, 1251.
      (f) Herrmann, A. T.; Smith, L. L.; Zakarian, A. J. Am. Chem. Soc. 2012, 134, 6976.
      (g) Sato, K.; Omote, M.; Ando, A.; Kmadaki, I. Org. Lett. 2004, 6, 4359.
      (h) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947.
      (i) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
      (j) Nagib, D. A. M.; MacMillan, D. W. C. Nature 2011, 480, 224.

    43. [43]

      Fennewald, J. C.; Lipshutz, B. H. Green Chem. 2014, 16, 1097.  doi: 10.1039/C3GC42119H

    44. [44]

      Cao, X.; Pan, X.; Zhou, P. Chem. Commun. 2014, 50, 3359.  doi: 10.1039/c3cc49689a

    45. [45]

      Lu, Y.; Li, Y.; Zhang, R. J. Fluorine Chem. 2014, 161, 128.  doi: 10.1016/j.jfluchem.2014.01.020

    46. [46]

      Pair, E.; Monteiro, N.; Bouyssi, D.; Baudoin, O. Angew. Chem., Int. Ed. 2013, 52, 5346.  doi: 10.1002/anie.201300782

    47. [47]

      Tan, Z.; Zhang, S. W.; Zhang, Y. J. Org. Chem. 2017, 82, 9384.  doi: 10.1021/acs.joc.7b01359

    48. [48]

      Jiang, H. F.; Huang, W.; Yu, Y.; Yi, S. J.; Li, J. W.; Wu, W. Q. Chem. Commun. 2017, 53, 7473.  doi: 10.1039/C7CC03125D

    49. [49]

      Li, C. F.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. New J. Chem. 2017, 41, 1471.
       

    50. [50]

      Simon, R. C.; Busto, E.; Richter, N.; Resch, V.; Houk, K. N.; Kroutil W. Nat. Commun. 2016, 7, 13323.  doi: 10.1038/ncomms13323

    51. [51]

      Bu, M.; Lu, G.; Cai, C. T. Org. Chem. Front. 2017, 4, 266.  doi: 10.1039/C6QO00622A

    52. [52]

      Yang, Y.; Xu, L.; Yu, S. Chem.-Eur. J. 2016, 22, 858.  doi: 10.1002/chem.201504790

    53. [53]

      Zhao, X.; Wei, A. Q.; Yang, B.; Li, T. J.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175.  doi: 10.1021/acs.joc.7b01226

    54. [54]

      Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965.  doi: 10.1002/anie.201508495

    55. [55]

      Yang, Y.; Xu, L.; Yu, S.; Liu, X.; Zhang, Y.; Vicic, D. A. Chem.-Eur. J. 2016, 22, 858.  doi: 10.1002/chem.201504790

    56. [56]

      Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.  doi: 10.1021/acs.orglett.6b01026

    57. [57]

      Hua, L. N.; Li, H.; Qing, F. L. Org. Biomol. Chem. 2016, 14, 8443.  doi: 10.1039/C6OB01567K

    58. [58]

      (a) Shangary, S.; Johnson, D. E. Leukemia 2003, 17, 1470.
      (b) Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H. Nature 2005, 435, 677;
      (c) Morizawa, Y.; Okazoe, T.; Wang, S. Z.; Sasaki, J.; Ebisu, H.; Nishikawa, M.; Shinyama, H. J. J. Fluorine Chem. 2001, 109, 83.

    59. [59]

      Smyth, L. A. J. Org. Chem. 2016, 81, 1285.  doi: 10.1021/acs.joc.5b02523

    60. [60]

      Konik, Y. A.; Kudrjashova, M.; Konrad N.; Kaabel, S.; Järving, I.; Lopp, M.; Kananovich, D. G. Org. Biomol. Chem. 2017, 15, 4635.  doi: 10.1039/C7OB00680B

    61. [61]

      van der Werf, A.; Hribersek, M.; Selander, N. Org. Lett. 2017, 19, 2374.  doi: 10.1021/acs.orglett.7b00908

    62. [62]

      Yang, H. B.; Selander, N. Org. Biomol. Chem. 2017, 15, 1771.  doi: 10.1039/C7OB00203C

    63. [63]

      Han, J. B.; Yang, L.; Chen, X.; Zha, G. F.; Zhang, C. P. Adv. Synth. Catal. 2016, 358, 4119.  doi: 10.1002/adsc.201600717

    64. [64]

      Liao, Y. Y.; Deng, J. C.; Ke, Y. P.; Zhong, X. L.; Xu, L.; Tang, R. Y.; Zheng, W. Chem. Commun. 2017, 53, 6073.  doi: 10.1039/C7CC02373A

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    9. [9]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    16. [16]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    19. [19]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    20. [20]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

Metrics
  • PDF Downloads(251)
  • Abstract views(8969)
  • HTML views(3694)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return