Citation: Mroz Robert, Vezzu Dileep A. K., Wallace Brian, Ravindranathan Deepak, Carroll Jeffrey, Pike Robert D., Huo Shouquan. A Comparative Study on Phosphorescent Cycloplatinated Complexes Based on Tridentate C^N^N-Coordinating Ligands and Phenylethynyl or Phenyl Ligand[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 171-182. doi: 10.6023/cjoc201709010 shu

A Comparative Study on Phosphorescent Cycloplatinated Complexes Based on Tridentate C^N^N-Coordinating Ligands and Phenylethynyl or Phenyl Ligand

  • Corresponding author: Huo Shouquan, huos@ecu.edu
  • Received Date: 8 September 2017
    Revised Date: 12 October 2017
    Available Online: 16 January 2017

Figures(9)

  • Two series of platinum complexes, 1a~6a and 1b-6b, based on tridentate cyclometalating ligands 2-aryl-6-(1H-pyrazol-1-yl)pyridine [Ar=phenyl (L1), 2, 4-difluorophenyl (L2), 3, 5-dimethylphenyl (L3), 3-methoxyphenyl (L4), 2-thienyl (L5), 2-benzothienyl (L6)], and phenylethynyl and phenyl ancillary ligand were synthesized and characterized. The X-ray crystal structures of 2b, 3b and 5b were determined, which revealed a twisted orientation of the phenyl ligand with respect to the coordination plane and a weaker Pt—C(phenyl) bond compared with the Pt—C(alkynyl) bond in 1a. Photophysical properties including electronic absorption and emission spectra were studied. Complexes 1a~6a based on the phenylethynyl ligand were strongly emissive, while 1b~3b based on the phenyl ligand were only weakly emissive. However, 4b~6b displayed lower but decent photoluminescent quantum yields than those of 4a~6a, which is explained by the localization of the excited states in the tridentate cyclometalating ligands. The higher quantum efficiencies displayed by the complexes 1a~6a may be attributed to the stronger and more rigid acetylide ligand.
  • 加载中
    1. [1]

      (a) Ma, Y. -G. ; Cheung, T. -C. ; Che, C. -M. ; Shen, J. -C. Thin Solid Films 1998, 333, 224.
      (b) Evans, R. C. ; Douglas, P. ; Williams, J. A. G. ; Rochester, D. L. J. Fluoresc. 2006, 16, 201.
      (c) Thomas Ⅲ, S. W. ; Venkatesan, K. ; Muller, P. ; Swager, T. M. J. Am. Chem. Soc. 2006, 128, 16641.
      (d) P. K. -M. ; Lai, S. -W. ; Lu, W. ; Zhu, N. ; Che, C. -M. Eur. J. Inorg. Chem. 2003, 2749.
      (e) Lanoë, P. -H. ; Fillaut, J. -L. ; Toupet, L. ; Williams, J. A. G. ; Bozec, H. L. ; Guerchais, V. Chem. Commun. 2008, 4333.
      (f) Wong, K. -H. ; Chan, M. C. -W. ; Che, C. -M. Chem. -Eur. J. 1999, 5, 2845.
      (g) Koo, C. -K. ; Ho, Y. -M. ; Chow, C. -F. ; Lam, M. H. -W. ; Lau, T. -C. ; Wong, W. -Y. Inorg. Chem. 2007, 46, 3603.
      (h) Feng, K. ; Zhang, R. Y. ; Wu, L. -Z. ; Tu, B. ; Peng, M. -L. ; Zhang, L. -P. ; Zhao, D. ; Tung, C. -H. J. Am. Chem. Soc. 2006, 128, 14685.

    2. [2]

      (a) Siu, P. K. -M. ; Ma, D. -L. ; Che, C. -M. Chem. Commun. 2005, 1025.
      (b) Botchway, S. W. ; Charnley, M. ; Haycock, J. W. ; Parker, A. W. ; Rochetser, D. L. ; Weinstein, J. A. ; Williams, J. A. G. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 16071.
      (c) Ma, D. -L. ; Che, C. -M. ; Yan, S. -C. J. Am. Chem. Soc. 2009, 131, 1835.
      (d) Wu, P. ; Wong, E. L. -M. ; Ma, D. -L. ; Tong, G. S. -M. ; Ng, K. -M. ; Che, C. -M. Chem. Eur. J. 2009, 15, 3652.
      (e) Wieczorek, B. ; Lemcke, B. ; Dijkstra, H. P. ; Egmond, M. R. ; Gebbink, R. J. M. K. ; van Koten, G. Eur. J. Inorg. Chem. 2010, 1929.

    3. [3]

      (a) Williams, J. A. G. ; Develay, S. D. ; Rochester, D. L. ; Murhy, L. Coord. Chem. Rev. 2008, 252, 2596.
      (b) Xiang, H. -F. ; Lai, S. -W. ; Lai, P. T. ; Che, C. -M. In Highly Efficient OLEDs with Phosphorescent Materials, Ed. : Yersin, H., Wiley-VCH, Weiheim, 2008.
      (c) Kalinowski, J. ; Fattori, V. ; Cocchi, M. ; Williams, J. A. G. Coord. Chem. Rev. 2011, 255, 2401.
      (d) Baggaley, E. ; Weinstein, J. A. ; Williams, J. A. G. Coord. Chem. Rev. 2012, 256, 1762.
      (e) Yang, X. ; Yao, C. ; Zhou, G. Platinum Metals Rev. 2013, 57, 2.

    4. [4]

      Huo, S.; Carroll, J.; Vezzu, D. A. K. Asian J. Org. Chem. 2015, 4, 1210.  doi: 10.1002/ajoc.v4.11

    5. [5]

      (a) Constable, E. C. ; Henney, R. P. G. ; Leese, T. A. ; Tocher, D. A. J. Chem. Soc., Chem. Commun. 1990, 513.

    6. [6]

      Lai, S.-W.; Chan, M. C. W.; Cheung, T.-C.; Peng, S.-M.; Che, C.-M. Inorg. Chem. 1999, 38, 4046.  doi: 10.1021/ic990238s

    7. [7]

      Lu, W.; Mi, B.-X.; Chan, M. C. W.; Hui, Z.; Che, C.-M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126, 4958.  doi: 10.1021/ja0317776

    8. [8]

      (a) Cheung, T. -C. ; Cheung, K. -K. ; Peng, S. -M. ; Che, C. -M. J. Chem. Soc, Chem., Dalton Trans. 1996, 1645.
      (b) Neve, F. ; Crispini, A. Campagna, S. Inorg. Chem. 1997, 36, 6150.
      (c) Lai, S. -W. ; Chan, M. C. W. ; Cheung, T. -C. ; Peng, S. -M. ; Che, C. -M. Inorg. Chem. 1999, 38, 4046.
      (d) Hofmann, A. ; Dahlenburg, L. ; van Eldik, R. Inorg. Chem. 2003, 42, 6528.
      (e) Che, C. -M. ; Fu, W. -F. ; Lai, S. -W. ; Hou, Y. -J. ; Liu, Y. -L. Chem. Commun. 2003, 118.
      (f) Lanoë, P. -H. ; Fillaut, J. -L. ; Toupet, L. ; Williams, J. A. G. ; Bozec, H. L. ; Guerchais, V. Chem. Commun. 2008, 4333.
      (g) Schneider, J. ; Du, P. ; Wang, X. ; Brennessel, W. W. ; Eisenberg, R. Inorg. Chem. 2009, 48, 1498.
      (h) Schneider, J. ; Du, P. ; Jarosz, P. ; Lazarides, T. ; Wang, X. ; Brennessel, W. W. ; Eisenberg, R. Inorg. Chem. 2009, 48, 4306.

    9. [9]

      (a) Kui, S. C. F. ; Sham, I. H. T. ; Cheung, C. C. C. ; Ma, C. -W. ; Yan, B. ; Zhu, N. ; Che, C. -M. ; Fu, W. -F. Chem. -Eur. J. 2007, 13, 417.
      (b) Tong, G. S. -M. ; Che, C. -M. Chem. -Eur. J. 2009, 15, 7225.
      (c) Yuen, M. -Y. ; Kui, S. C. F. ; Low, K. -H. ; Kwok, C. -C. ; Chui, S. S. -Y. ; Ma, C. -W. ; Zhu, N. ; Che, C. -M. Chem. -Eur. J. 2010, 16, 14131.
      (d) Chow, P. -K. ; Cheng, G. ; Tong, G. S. M. ; To, W. -P. ; Kwong, W. -L. ; Low, K. -H. ; Kwok, C. -C. ; Ma, C. ; Che, C. -M. Angew. Chem., Int. Ed. 2015, 54, 2084.

    10. [10]

      (a) Ravindranathan, D. ; Vezzu, D. A. K. ; Bartolotti, L. ; Boyle, P. D. ; Huo, S. Inorg. Chem. 2010, 49, 8922.
      (b) Harris, C. F. ; Vezzu, D. A. K. ; Bartolotti, L. ; Boyle, P. D. ; Huo, S. Inorg. Chem. 2013, 52, 11711.

    11. [11]

      (a) Chan, C. -W. ; Cheng, L. -K. ; Che, C. -M. Coord. Chem. Rev. 1994, 132, 87.
      (b) Yam, V. W. -W. ; Wong, K. M. -C. Top. Curr. Chem. 2005, 257, 1.
      (c) Castellano, F. N. ; Pomestchenko, I. E. ; Shikhova, E. ; Hua, F. ; Muro, M. L. ; Rajapakse, N. Coord. Chem. Rev. 2006, 250, 1819.
      (d) Wong, K. M. -C. ; Yam, V. W. -W. Coord. Chem. Rev. 2007, 251, 2477.

    12. [12]

      Sowinski, A. F. ; Deaton, J. C. ; Huo, S. US 6824895, 2004.

    13. [13]

      Gong, D.; Liu, W.; Chen, T.; Chen, Z.-R.; Huang, K.-W. J. Mol. Catal. Chem. A:Chem. 2014, 395, 100.  doi: 10.1016/j.molcata.2014.08.005

    14. [14]

      Harris, C. F.; Ravindrananthan, D.; Huo, S. Tetrahedron Lett. 2012, 53, 5389.  doi: 10.1016/j.tetlet.2012.07.105

    15. [15]

      Vila, C.; Hornillos, V.; Fa anás-Mastral, M.; Feringa, B. L. Org. Biomol. Chem. 2014, 12, 9321.  doi: 10.1039/C4OB01896F

    16. [16]

      Minghetti, G.; Cinellu, M. A.; Chelucci, G.; Gladiali, S.; Demartin, F.; Manassero, M. J. Organomet. Chem. 1986, 307, 107.  doi: 10.1016/0022-328X(86)80181-4

    17. [17]

      Kober, E. M.; Caspar, J. V.; Lumpkin, R. S.; Meyer, T. J. J. Phys. Chem. 1986, 90, 3722.  doi: 10.1021/j100407a046

    18. [18]

      Lees, A. J. Comments Inorg. Chem. 1995, 17, 319.  doi: 10.1080/02603599508032711

    19. [19]

      Meech, S. R.; Phillips, D. J. Photochem. 1983, 23, 193.  doi: 10.1016/0047-2670(83)80061-6

    20. [20]

      Nakamaru, K. Bull. Chem. Soc. Jpn. 1982, 55, 2697.  doi: 10.1246/bcsj.55.2697

    21. [21]

      Williams, J. A. G.; Beeby, A.; Davies, E. S.; Weinstein, J. A.; Wilson, C. Inorg. Chem. 2003, 42, 8609.  doi: 10.1021/ic035083+

    22. [22]

      SAINT PLUS, Bruker Analytical X-ray Systems, Madison, WI, 2001.

    23. [23]

      SADABS, Bruker Analytical X-ray Systems, Madison, WI, 2001.

    24. [24]

      Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.  doi: 10.1107/S0108767307043930

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    7. [7]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    8. [8]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    9. [9]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    19. [19]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    20. [20]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

Metrics
  • PDF Downloads(5)
  • Abstract views(2152)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return