Citation: Wang Sheng, Xu Xiaoliang, Li Xiaonian. Progress on the Transformations of Amino Acids by Heterogeneous Catalysis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 565-574. doi: 10.6023/cjoc201709003 shu

Progress on the Transformations of Amino Acids by Heterogeneous Catalysis

  • Corresponding author: Xu Xiaoliang, xuxiaoliang@zjut.edu.cn; xnli@zjut.edu.cn Li Xiaonian, 
  • Received Date: 4 September 2017
    Revised Date: 12 October 2017
    Available Online: 3 March 2017

    Fund Project: Project supported by the Natural Science Foundation of Zhejiang Province (No. LY18B020018)the Natural Science Foundation of Zhejiang Province LY18B020018

Figures(14)

  • The catalytic transformation of amino acids is one of the important routes in utilization of amino acids in chemical and biological fields. In this review, catalytic hydrogenation from amino acids to chiral amino alcohols, catalytic decarboxylation to produce amine and nitrile, catalytic deamination to produce carboxylic acid and its derivatives, catalytic pyrolysis to produce bio-fuel and the application as heterogeneous chiral catalyst were summarized. In the catalytic hydrogenation of amino acids, Ru and Rh-based catalysts showed better catalytic performance, and the temperature was a main factor on the optical purity of the product. The decarboxylation, deamination and pyrolysis reaction required relatively high temperature, which needed a large amount of energy consumption. The search of high activity and selectivity heterogeneous catalyst to achieve the reduction of the reaction temperature and pressure is the focus of future research. As the heterogeneous chiral catalyst, the research should be focus on the efficiency, seperation and recycling of the catalyst.
  • 加载中
    1. [1]

    2. [2]

      Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Science 2012, 337, 695.  doi: 10.1126/science.1218930

    3. [3]

      Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788.  doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Demain, A. L. Ind. Biotech. 2007, 3, 269.  doi: 10.1089/ind.2007.3.269

    5. [5]

      Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.  doi: 10.1021/ja00252a056

    6. [6]

      Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217.  doi: 10.1021/jm00126a013

    7. [7]

      Corey, E. J.; Zhang, F. Y. Angew. Chem., Int. Ed. 1999, 38, 1931.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      (a) Abdelrahman, O. A.; Heyden, A.; Bond, J. Q. ACS Catal. 2014, 4, 1171.
      (b) Tan, J.; Cui, J.; Cui, X.; Deng, T.; Li, X.; Zhu, Y.; Li, Y. ACS Catal. 2015, 5, 7379.
      (c) Zhou, M.; Zhang, H.; Ma, H.; Ying, W. Ind. Eng. Chem. Res. 2017, 56, 8833.

    9. [9]

      (a) Wang, F.; Zhang, Z. ACS Sustainable Chem. Eng. 2016, 5, 942.
      (b) Adkins, H.; Pavlic, A. A. J. Am. Chem. Soc. 1947, 69, 3039.
      (c) Zhu, Y.; Zhu, Y.; Ding, G.; Zhu, S.; Zheng, H.; Li, Y. Appl. Catal., A 2013, 468, 296.
      (d) Zheng, X.; Lin, H.; Zheng, J.; Duan, X.; Yuan, Y. ACS Catal. 2013, 3, 2738.

    10. [10]

      Di, X.; Li, C.; Zhang, B.; Qi, J.; Li, W.; Su, D.; Liang, C. Ind. Eng. Chem. Res. 2017, 56, 4672.  doi: 10.1021/acs.iecr.6b04875

    11. [11]

      Primo, A.; Concepción, P.; Corma, A. Chem. Commun. 2011, 47, 3613.  doi: 10.1039/c0cc05206j

    12. [12]

      Fan, G.; Zhou, Y.; Fu, H.; Ye, X.; Li, R.; Chen, H.; Li, X. Chin. J. Chem. 2011, 29, 229.  doi: 10.1002/cjoc.201190071

    13. [13]

      Adkins, H., Billica, H. R. J. Am. Chem. Soc. 1948, 70, 3121.  doi: 10.1021/ja01189a085

    14. [14]

      (a) Antons, S.; Beitzke, B. DE 4428106, 1996 [Chem. Abstr. 1996, 124, 288759].
      (b) Antons, S. DE 4444109, 1996 [Chem. Abstr. 1996, 125, 114175].

    15. [15]

      Antons, S.; Tilling, A. S.; Wolters, E. WO 9938838, 1999[Chem. Abstr. 1999, 131, 130283].

    16. [16]

      Mägerlein, W.; Dreisbach, C.; Hugl, H.; Tse, M. K.; Klawonn, M.; Bhor, S.; Beller, M. Catal. Today 2007, 121, 140.  doi: 10.1016/j.cattod.2006.11.024

    17. [17]

      Metkar, P. S.; Scialdone, M. A.; Moloy, K. G. Green Chem. 2014, 16, 4575.  doi: 10.1039/C4GC01167H

    18. [18]

      Gong, D.-C.; Tu, Z.-Y.; He, H.-H.; Wei, P.; Ou Yang, P.-K. Mod. Chem. Ind. 2007, 27, 151(in Chinese).  doi: 10.3321/j.issn:0253-4320.2007.z1.035

    19. [19]

      Tamura, M.; Tamura, R.; Takeda, Y.; Nakagawa, Y.; Tomishige, K. Chem. Commun. 2014, 50, 6656.  doi: 10.1039/c4cc02675f

    20. [20]

      Jere, F. T. Ph.D. Dissertation, Michigan State University, East Lansing, 2003.
       

    21. [21]

      Tamura, M.; Tamura, R.; Takeda, Y.; Nakagawa, Y.; Tomishige, K. Chem.-Eur. J. 2015, 21, 3097.  doi: 10.1002/chem.201405769

    22. [22]

      Holladay, J. E.; Werpy, T. A.; Muzatko, D. S. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4~7, Breckenridge, Humana Press, Clifton, 2003, pp. 857~869.
       

    23. [23]

      Jere, F. T.; Miller, D. J.; Jackson, J. E. Org. Lett. 2003, 5, 527.  doi: 10.1021/ol0274211

    24. [24]

      Wang, Y. M.S. Thesis, Tianjin University, Tianjin, 2007(in Chinese).

    25. [25]

      He, H.-H. M.S. Thesis, Nanjing Tech University, Nanjing, 2005(in Chinese).

    26. [26]

      Zwietering, T. N. Chem. Eng. Sci. 1958, 8, 244.  doi: 10.1016/0009-2509(58)85031-9

    27. [27]

      Jere, F. T.; Jackson, J. E.; Miller, D. J. Ind. Eng. Chem. Res. 2004, 43, 3297.  doi: 10.1021/ie034046n

    28. [28]

      Bhandare, S. G.; Vaidya, P. D. Ind. Eng. Chem. Res. 2017, 56, 3797.  doi: 10.1021/acs.iecr.6b04406

    29. [29]

      Pimparkar, K. P.; Miller, D. J.; Jackson, J. E. Ind. Eng. Chem. Res. 2008, 47, 7648.  doi: 10.1021/ie800351x

    30. [30]

      Roose, P.; Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. Amines, Aliphatic in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, Germany, 2015, pp. 1~55.
       

    31. [31]

      Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J. P.; Boutevin, B. Chem. Rev. 2016, 116, 14181.  doi: 10.1021/acs.chemrev.6b00486

    32. [32]

      De Schouwer, F.; Claes, L.; Claes, N.; Bals, S.; Degrève, J.; De Vos, D. E. Green Chem. 2015, 17, 2263.  doi: 10.1039/C4GC02194K

    33. [33]

      Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E. M.; Bals, S.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2016, 6, 7303.  doi: 10.1021/acscatal.6b02561

    34. [34]

      Verduyckt, J.; Coeck, R.; De Vos, D. E. ACS Sustainable Chem. Eng. 2017, 5, 3290.  doi: 10.1021/acssuschemeng.6b03140

    35. [35]

      Claes, L.; Verduyckt, J.; Stassen, I.; Lagrain, B.; De Vos, D. E. Chem. Commun. 2015, 51, 6528.  doi: 10.1039/C5CC00181A

    36. [36]

      Claes, L.; Matthessen, R.; Rombouts, I.; Stassen, I.; De Baerdemaeker, T.; Depla, D.; Delcour, J. A.; Lagrain, B.; DeVos, D. E. ChemSusChem 2015, 8, 345.  doi: 10.1002/cssc.201402801

    37. [37]

      De Schouwer, F.; Cuypers, T.; Claes, L.; De Vos, D. E. Green Chem. 2017, 19, 1866.  doi: 10.1039/C6GC03222B

    38. [38]

      Liu, G.; Wright, M. M.; Zhao, Q.; Brown, R. C.; Wang, K.; Xue, Y. Energy Convers. Manage. 2016, 112, 220.  doi: 10.1016/j.enconman.2016.01.024

    39. [39]

      Yi, L.; Liu, H.; Lu, G.; Zhang, Q.; Wang, J.; Hu, H.; Yao, H. Energ. Fuel. 2017, 31, 9484.  doi: 10.1021/acs.energyfuels.7b01413

    40. [40]

      Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 1971, 10, 496.  doi: 10.1002/(ISSN)1521-3773

    41. [41]

      List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.  doi: 10.1021/ja994280y

    42. [42]

      List, B. Tetrahedron 2002, 58, 5573.  doi: 10.1016/S0040-4020(02)00516-1

    43. [43]

      (a) Wang, J.-Z. M.S. Thesis, Beijing University of Chemical Technology, Beijing, 2011(in Chinese).
      王玖钊, 硕士论文, 北京化工大学, 北京, 2011.
      (b) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33.
      (c) Doyagüez, E. G.; Calderon, F.; Sanchez, F.; FernandezMayoralas, A. J. Org. Chem. 2007, 72, 9353.

    44. [44]

      Gao, J.; Liu, J.; Jiang, D.; Xiao, B.; Yang, Q. J. Mol. Catal. A:Chem. 2009, 313, 79.  doi: 10.1016/j.molcata.2009.08.005

    45. [45]

      An, Z.; Zhang, W.; Shi, H.; He, J. J. Catal. 2006, 241, 319.  doi: 10.1016/j.jcat.2006.04.035

    46. [46]

      An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 2566.  doi: 10.1021/cs500385s

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    13. [13]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

Metrics
  • PDF Downloads(35)
  • Abstract views(2664)
  • HTML views(798)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return