Citation: Wang Mincan. Enantioselective Analysis: Logic of Chiral Ligand Design for Asymmetric Addition of Diethylzinc to Benzaldehyde[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 162-170. doi: 10.6023/cjoc201708066 shu

Enantioselective Analysis: Logic of Chiral Ligand Design for Asymmetric Addition of Diethylzinc to Benzaldehyde

  • Corresponding author: Wang Mincan, wangmincan@zzu.edu.cn
  • Received Date: 31 August 2017
    Revised Date: 11 September 2017
    Available Online: 24 January 2017

    Fund Project: Project supported by the National Natural Sciences Foundation of China (Nos. 21272216, 20972140)the National Natural Sciences Foundation of China 20972140the National Natural Sciences Foundation of China 21272216

Figures(14)

  • A detailed logic-guided approach towards chiral ligands design is described via the enantioselective analysis of the dynamic conformational behaviors of catalyst, which is based on a mathematical relationship between conformations and enantioselectivity, for asymmetric addition of diethylzinc to benzaldehyde. Following this logic thought, 94 examples, almost all highly enantioselective β-aminoalcohol ligands reported, can be rationally devised by the logic control of the dynamic conformational behaviors of the catalyst from the simplest β-aminoalcohol with one single chiral center as starting point.
  • 加载中
    1. [1]

      Knowles, W. S. Acc. Chem. Res. 1983, 16, 106.  doi: 10.1021/ar00087a006

    2. [2]

      (a) Kozlowski, M. C.; Dixon, S. L.; Panda, M.; Lauri, G. J. Am. Chem. Soc. 2003, 125, 6614.
      (b) Ianni, J. C.; Annamalai, V.; Phuan, P.-W.; Panda, M.; Kozlowski, M. C. Angew. Chem., Int. Ed. 2006, 45, 5502.
      (c) Huang, J.; Ianni, J. C.; Antoline, J. E.; Hsung, R. P.; Kozlowski, M. C. Org. Lett. 2006, 8, 1565.

    3. [3]

      (a) Vidal-Ferran, A.; Moyano, A.; Pericàs, M. A.; Riera, A. Tetrahedron Lett. 1997, 38, 8773.
      (b) Kozlowski, M. C.; Panda, M. J. Org. Chem. 2003, 68, 2061.

    4. [4]

      (a) Wang, M.-C.; Wang, D.-K.; Zhu, Y.; Liu, L.-T.; Guo, Y.-F. Tetrahedron: Asymmetry 2004, 15, 1289.
      (b) Wang, M.-C.; Liu, L.-T.; Zhang, J.-S.; Shi, Y.-Y.; Wang, D.-K. Tetrahedron: Asymmetry 2004, 15, 3853.
      (c) Wang, M.-C.; Wang, D.-K.; Lou, J.-P.; Hua, Y.-Z. Chin. J. Chem. 2004, 22, 512.
      (d) Wang, M.-C.; Hou, X.-H.; Xu, C.-L.; Liu, L.-T.; Li, G.-L.; Wang, D.-K. Synthesis 2005, 3620.
      (e) Xu, C.-L.; Wang, M.-C.; Hou, X.-H.; Liu, H.-M.; Wang, D.-K. Chin. J. Chem. 2005, 23, 155.
      (f) Wang, M.-C.; Zhao, W.-X.; Wang, X.-D.; Song, M.-P. Synlett 2006, 3443.
      (g) Wang, M.-C.; Hou, X.-H.; Chi, C.-X.; Tang, M.-S. Tetrahedron: Asymmetry 2006, 17, 2126.
      (h) Wang, M.-C.; Zhang, Q.-J.; Zhao, W. X.; Wang, X.-D.; Ding, X. J. Org. Chem. 2008, 73, 168.
      (i) Wang, M.-C.; Wang, X.-D.; Ding, X.; Liu, Z.-K. Tetrahedron 2008, 64, 2559.
      (j) Wang, M.-C.; Zhang, Q.-J.; Li, G.-W.; Liu, Z.-K. Tetrahedron: Asymmetry 2009, 20, 288.
      (k) Niu, J.-L.; Wang, M.-C.; Lu, L.-J.; Ding, G.-L.; Lu, H.-J.; Chen, Q.-T.; Song, M.-P. Tetrahedron: Asymmetry 2009, 20, 2616.
      (l) Song, X.-X.; Hua, Y.-Z.; Shi, J.-G.; Sun, P.-P.; Wang, M.-C.; Chang, J.-B. J. Org. Chem. 2014, 79, 6087.
      (m) Wang, M.-C.; Liu, Z.-K.; Li, S.; Ding, X.; Li, Y.; Tang, M.-S. Tetrahedron: Asymmetry 2010, 21, 486.
      (n) Wang, M.-C.; Wang, Y.-H.; Li, G.-W.; Sun, P.-P.; Tie. J.-X.; Lu, H.-J. Tetrahedron: Asymmetry 2011, 22, 761;
      (o) Wang, M.-C.; Huang, P.-J.; Yang, X.-C.; Song, X.-X.; Lu, H.-J. Tetrahedron: Asymmetry 2014, 25, 781.
      (p) Wang, M.-C.; Li, G.-W.; Hu, W.-B.; Hua, Y.-Z.; Song, X.; Lu, H.-J. Tetrahedron: Asymmetry 2014, 25, 1360.

    5. [5]

      (a) Seeman, J. I. Chem. Rew. 1983, 83, 83.
      (b) Seeman, J. I. J. Chem. Educ. 1986, 63, 42.

    6. [6]

      Reviews on enantioselective organozinc additions to aldehydes:(a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49.
      (b) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
      (c) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757.
      (d) Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed. Engl. 2001, 40, 92.
      (e) Walsh, P. Acc. Chem. Res. 2003, 36, 739.
      (f) Zhu, H.-J.; Jiang, J.-X.; Ren, J.; Yan, Y.-M.; Pittman, C. U. Curr. Org. Synth. 2005, 2, 547.
      (g) Hatano, M.; Miyamoto, T.; Ishihara, K. Curr. Org. Chem. 2007, 11, 127.

    7. [7]

      (a) M. Yamakawa, R. Noyori, J. Am. Chem. Soc. 1995, 117, 6327.
      (b) Yamakawa, M.; Noyori, R. Organometallics 1999, 18, 128.

    8. [8]

      Rasmussen, T.; Norrby, P.-O. J. Am. Chem. Soc. 2003, 125, 5130.  doi: 10.1021/ja0292952

    9. [9]

      (a) Tsukube, H.; Hosokubo, M.; Wada, M.; Shinoda, S.; Tamiaki, H. J. Chem. Soc., Dalton Trans. 1999, 11.
      (b) Tsukube, H.; Hosokubo, M.; Wada, M.; Shinoda, S.; Tamiaki, H. Inorg. Chem. 2001, 40, 740.

    10. [10]

      Alonso, J. L.; M. Sanz, E.; López, J. C.; Cortijo, V. J. Am. Chem. Soc. 2009, 131, 4320.  doi: 10.1021/ja807674q

    11. [11]

      (a) Paolucci, C.; Rosini, G. Tetrahedron: Asymmetry 2007, 18, 2923.
      (b) Zacharia, J. T.; Tanaka, T.; Uesaka, Y.; Hayashi, M. Sythesis 2012, 44, 1625.

    12. [12]

      Muchow, G.; Vannoorenberghe, Y.; Buono, G. Tetrahedron Lett. 1987, 28, 6163.  doi: 10.1016/S0040-4039(00)61836-1

    13. [13]

      (a) Soai, K.; Yokoyama, S.; Ebihara, K.; Hayasaka, T. J. Chem. Soc., Chem. Commun. 1987, 1690.
      (b) Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem. 1991, 56, 4264.

    14. [14]

      Soai, K.; Konishi, T.; Shibata, T. Heterocycles 1999, 51, 1421.  doi: 10.3987/COM-99-8532

    15. [15]

      (a) Bastin, S.; Ginj, M.; Brocard, J.; Pélinski, L.; Novogrocki, G. Tetrahedron: Asymmetry 2003, 14, 1701.
      (b) Bastin, S.; Brocard, J.; Pélinski, L. Tetrahedron Lett. 2000, 41, 7303.

    16. [16]

      (a) Heaton, S. B.; Jones, G. B. Tetrahedron Lett. 1992, 33, 1693.
      (b) Jones, G. B.; Heaton, S. B. Tetrahedron: Asymmetry 1993, 4, 261.

    17. [17]

      Jimeno, C.; Pastó, M.; Riera, A.; Pericàs, M. A. J. Org. Chem. 2003, 68, 3130.  doi: 10.1021/jo034007l

    18. [18]

      Tseng, S.-L.; Yang, T.-K. Tetrahedron: Asymmetry 2004, 15, 3375.  doi: 10.1016/j.tetasy.2004.08.009

    19. [19]

      Nugent, W. A. Org. Lett. 2002, 4, 2133.  doi: 10.1021/ol0259488

    20. [20]

      Nugent, W. A.; Licini, G.; Bonchio, M.; Bortolini, O.; Finn, M. G.; McClelland, B. W. Pure Appl. Chem. 1998, 70, 1071.

    21. [21]

      Vidal-Ferran, A.; Moyano, A.; Pericàs, M. A.; Riera, A. J. Org. Chem. 1997, 62, 4970.  doi: 10.1021/jo9701445

    22. [22]

      Li, S.; Jiang, Y.; Mi, A. Tetrahedron: Asymmetry 1992, 3, 1467.  doi: 10.1016/0957-4166(92)80023-P

    23. [23]

      Noyori, R.; Suga, S.; Kawai, K.; Okada, S.; Kitamura, M.; Oguni, N.; Hayashi, M.; Kaneko, T.; Matsuda, Y. J. Organomet. Chem. 1990, 382, 19.  doi: 10.1016/0022-328X(90)85212-H

    24. [24]

      (a) Cho, B. T.; Chun, Y. S. Tetrahedron: Asymmetry 1998, 9, 1489.
      (b) Cho, B. T.; Chun, Y. S.; Yang, W. K. Tetrahedron: Asymmetry 2000, 11, 2149.

    25. [25]

      Reddy, K. S.; Solà, L.; Moyano, A.; Pericàs, M.; Riera, A. J. Org. Chem. 1999, 64, 3969.  doi: 10.1021/jo982442n

    26. [26]

      Reddy, K. S.; Solà, L.; Moyano, A.; Pericàs, M.; Riera, A. Synthesis 2000, 1, 165.

    27. [27]

      Solà, L.; K. Reddy, S.; Vidal-Ferran, A.; Moyano, A.; Pericàs, M. A.; Riera, A.; Alvarez-Larena, A.; Piniella, J.-F. J. Org. Chem. 1998, 63, 7078.  doi: 10.1021/jo981336i

    28. [28]

      Peper, V.; Martens, J. Chem. Ber. 1996, 129, 691.  doi: 10.1002/(ISSN)1099-0682

    29. [29]

      (a) Delair, P.; Einhorn, C.; Einhorn, J.; Luche, J. L. J. Org. Chem. 1994, 59, 4680.
      (b) Delair, P.; Einhorn, C.; Dinhorn, J.; Luche, J. L. Tetrahedron 1995, 51, 165.

    30. [30]

      Beliczey, J.; Giffels, G.; Kragl, U.; Wandrey, C. Tetrahedron: Asymmetry 1997, 8, 1529.  doi: 10.1016/S0957-4166(97)00150-X

    31. [31]

      Kossenjans, M.; Pennemann, H.; Martens, J.; Juanes, O.; Rodriguez-Ubis, J. C.; Brunet, E. Tetrahedron: Asymmetry 1998, 9, 4123.  doi: 10.1016/S0957-4166(98)00452-2

    32. [32]

      Kawanami, Y.; Mitsuie, T.; Miki, M.; Sakamoto, T.; Nishitani, K. Tetrahedron 2000, 56, 175.  doi: 10.1016/S0040-4020(99)00971-0

    33. [33]

      Da, C.; Han, Z.; Ni, M.; Yan, F.; Liu, D.; Zhou, Y.; Wang, R. Tetrahedron: Asymmetry 2003, 14, 659.  doi: 10.1016/S0957-4166(03)00122-8

    34. [34]

      Yadav, A. K.; Kumar, M.; Yadav, T.; Jain, R. Synlett 2010, 712.

    35. [35]

      (a) Chrisman, W.; J. Camara, N.; Marcellini, K.; Singaram, B.; Goralski, C. T.; Hasha, D. L.; Rudolf, P. R.; Nicholson, L. W.; Borodychuk, K. K. Tetrahedron Lett. 2001, 42, 5805.
      (b) Steiner, D.; Sethofer, S. G.; Goralski, C. T.; Singaram, B. Tetrahedron: Asymmetry 2002, 13, 1477.

    36. [36]

      Rachwalski, M. Tetrahedron: Asymmetry 2014, 25, 219.  doi: 10.1016/j.tetasy.2013.11.011

    37. [37]

      Kimura, K.; Sugiyama, E.; Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1992, 33, 3147.  doi: 10.1016/S0040-4039(00)79836-4

    38. [38]

      Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 4832.  doi: 10.1021/ja00122a013

    39. [39]

      Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071.  doi: 10.1021/ja00279a083

    40. [40]

      Nugent, W. A. J. Chem. Soc., Chem. Commun. 1999, 1369.

    41. [41]

      Binder, C. M.; Bautista, A.; Zaidlewicz, M.; Krzeminski, M. P.; Oliver, A.; Singaram, B. J. Org. Chem. 2009, 74, 2337.  doi: 10.1021/jo802371z

  • 加载中
    1. [1]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    2. [2]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    3. [3]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    4. [4]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    5. [5]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    6. [6]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    7. [7]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    8. [8]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    9. [9]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    10. [10]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    11. [11]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    12. [12]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    13. [13]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    14. [14]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    15. [15]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    18. [18]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    19. [19]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    20. [20]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

Metrics
  • PDF Downloads(6)
  • Abstract views(2207)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return