Citation: Cai Mao, Han Yanfang, Zhang Qi, Luo Sanzhong. Aniline Catalysis in Bioconjugations and Material Synthesis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 1-10. doi: 10.6023/cjoc201708050 shu

Aniline Catalysis in Bioconjugations and Material Synthesis

  • Corresponding author: Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 23 August 2017
    Revised Date: 28 September 2017
    Available Online: 11 January 2017

    Fund Project: the National Natural Science Foundation of China 21390400the National Natural Science Foundation of China 21521002the National Natural Science Foundation of China 21672217Project supported by the National Natural Science Foundation of China (Nos. 21390400, 21672217, 21521002)

Figures(14)

  • The oxime or hydrazone formation is a classic condensation reaction between aldehydes/ketones and hydroxyl amine or hydrazine. It is a simple, yet fundamental coupling reaction that has been widely applied in the ligations and conjugations of biomolecules and material synthesis. However, the reactions are usually sluggish and normally require acidic conditions with large excess of substrates to facilitate conversion, which limit their wide applications. Recent studies have shown that aniline as a nucleophilic catalyst can significantly accelerate the oxime/hydrazone formation reaction, preliminarily solving the reaction rate issue under mild and bio-compatible conditions. Therefore, it has been the most common coupling method in the modification of biological macromolecules. In this review, the design and development of aromatic amine catalyst in recent years as well as the catalytic mechanism and structure activity relationship are summarized. The application of highly active aniline catalysis in bioconjugations and material synthesis was also included together with a prospect for future development.
  • 加载中
    1. [1]

    2. [2]

      (a) Fisher, E. Ber. Dtsch. Chem. Ges. 1888, 21, 984.
      (b) Janny, A. Ber. Dtsch. Chem. Ges. 1882, 15, 2778.
      (c) Meyer, V.; Janny, A. Ber. Dtsch. Chem. Ges. 1882, 15.

    3. [3]

      (a) Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Science 1997, 276, 1125.
      (b) Maxson, T.; Tietz, J. I.; Hudson, G. A.; Guo, X. R.; Tai, H. C.; Mitchell, D. A. J. Am. Chem. Soc. 2016, 138, 15157.
      (c) Tang, L.; Yin, Q.; Xu, Y.; Zhou, Q.; Cai, K.; Yen, J.; Dobrucki, L. W.; Cheng, J. Chem. Sci. 2015, 6, 2182.
      (d) Rosik, D.; Thibblin, A.; Antoni, G.; Honarvar, H.; Strand, J.; Selvaraju, R. K.; Altai, M.; Orlova, A.; Eriksson Karlstrom, A.; Tolmachev, V. Bioconjugate Chem. 2014, 25, 82.
      (e) Collins, J.; Xiao, Z.; Müllner, M.; Connal, L. A. Polym. Chem. 2016, 7, 3812.
      (f) Simpson, M. G.; Pittelkow, M.; Watson, S. P.; Sanders, J. K. Org. Biomol. Chem. 2010, 8, 1181.

    4. [4]

      Saito, F.; Noda, H.; Bode, J. W. ACS Chem. Biol. 2015, 10, 1026.  doi: 10.1021/cb5006728

    5. [5]

      Kool, E. T.; Park, D. H.; Crisalli, P. J. Am. Chem. Soc. 2013, 135, 17663.  doi: 10.1021/ja407407h

    6. [6]

      Schmidt, P.; Stress, C.; Gillingham, D. Chem. Sci. 2015, 6, 3329.  doi: 10.1039/C5SC00921A

    7. [7]

      Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 826.  doi: 10.1021/ja00864a030

    8. [8]

      (a) Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int. Ed. 2006, 45, 7581.
      (b) Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J. Am. Chem. Soc. 2006, 128, 15602.

    9. [9]

      (a) Jencks, W. P. J. Am. Chem. Soc. 1959, 81, 475.
      (b) Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 832.
      (c) Sayer, J. M.; Pinsky, B.; Schonbrunn, A.; Washtien, W. J. Am. Chem. Soc. 1974, 96, 7998.

    10. [10]

      (a) Malpica, A.; Calzadilla, M.; Cordova, T. J. Phys. Org. Chem. 2000, 13, 162.
      (b) Malpica, A.; Calzadilla, M. J. Phys. Org. Chem. 2005, 18, 945.

    11. [11]

      Sander, E. G.; Jencks, W. P. J. Am. Chem. Soc. 1968, 90, 6154.  doi: 10.1021/ja01024a038

    12. [12]

      Kirmizialtin, S.; Yildiz, B. S.; Yildiz, I. J. Phys. Org. Chem. 2017, e3711.
       

    13. [13]

      Dirksen, A.; Dawson, P. E. Bioconjugate Chem. 2008, 19, 2543.  doi: 10.1021/bc800310p

    14. [14]

      Blanden, A. R.; Mukherjee, K.; Dilek, O.; Loew, M.; Bane, S. L. Bioconjugate Chem. 2011, 22, 1954.  doi: 10.1021/bc2001566

    15. [15]

      Rashidian, M.; Mahmoodi, M. M.; Shah, R.; Dozier, J. K.; Wagner, C. R.; Distefano, M. D. Bioconjugate Chem. 2013, 24, 333.  doi: 10.1021/bc3004167

    16. [16]

      Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  doi: 10.1021/jo302746p

    17. [17]

      Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  doi: 10.1021/ol400427x

    18. [18]

      Wendeler, M.; Grinberg, L.; Wang, X.; Dawson, P. E.; Baca, M. Bioconjugate Chem. 2014, 25, 93.  doi: 10.1021/bc400380f

    19. [19]

      Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  doi: 10.1021/ol503372j

    20. [20]

      (a) Xu, C.; Zhang, L.; Luo, S. J. Org. Chem. 2014, 79, 11517.
      (b) Xu, C.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2014, 53, 4149.

    21. [21]

      Hine, J.; Li, W. S. J. Org. Chem. 1975, 40, 2622.  doi: 10.1021/jo00906a010

    22. [22]

      Agten, S. M.; Dawson, P. E.; Hackeng, T. M. J. Pept. Sci. 2016, 22, 271.  doi: 10.1002/psc.2874

    23. [23]

      Zeng, Y.; Ramya, T. N.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207.
       

    24. [24]

      Rayo, J.; Amara, N.; Krief, P.; Meijler, M. M. J. Am. Chem. Soc. 2011, 133, 7469.  doi: 10.1021/ja200455d

    25. [25]

      Key, J. A.; Li, C.; Cairo, C. W. Bioconjugate Chem. 2012, 23, 363.  doi: 10.1021/bc200276k

    26. [26]

      Hahn, A.; Reschke, S.; Leimkuhler, S.; Risse, T. J. Phys. Chem. B 2014, 118, 7077.  doi: 10.1021/jp503471j

    27. [27]

      Li, X.-G.; Haaparanta, M.; Solin, O. J. Fluorine Chem. 2012, 143, 49.  doi: 10.1016/j.jfluchem.2012.07.005

    28. [28]

      Yuen, L. H.; Saxena, N. S.; Park, H. S.; Weinberg, K.; Kool, E. T. ACS Chem. Biol. 2016, 11, 2312.  doi: 10.1021/acschembio.6b00269

    29. [29]

      Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.  doi: 10.1038/nchembio.2024

    30. [30]

      Karmakar, S.; Harcourt, E. M.; Hewings, D. S.; Scherer, F.; Lovejoy, A. F.; Kurtz, D. M.; Ehrenschwender, T.; Barandun, L. J.; Roost, C.; Alizadeh, A. A.; Kool, E. T. Nat. Chem. 2015, 7, 752.  doi: 10.1038/nchem.2307

    31. [31]

      Boekhoven, J.; Poolman, J. M.; Maity, C.; Li, F.; van der Mee, L.; Minkenberg, C. B.; Mendes, E.; van Esch, J. H.; Eelkema, R. Nat. Chem. 2013, 5, 433.  doi: 10.1038/nchem.1617

    32. [32]

      Eelkema, R.; van Esch, J. H. Org. Biomol. Chem. 2014, 12, 6292.  doi: 10.1039/C4OB01108B

    33. [33]

      (a) Trausel, F.; Versluis, F.; Maity, C.; Poolman, J. M.; Lovrak, M.; van Esch, J. H.; Eelkema, R. Acc. Chem. Res. 2016, 49, 1440.
      (b) Poolman, J. M.; Maity, C.; Boekhoven, J.; van der Mee, L.; le Sage, V. A. A.; Groenewold, G. J. M.; van Kasteren, S. I.; Versluis, F.; van Esch, J. H.; Eelkema, R. J. Mater. Chem. B 2016, 4, 852.

    34. [34]

      Brinkhuis, R. P.; de Graaf, F.; Hansen, M. B.; Visser, T. R.; Rutjes, F. P. J. T.; van Hest, J. C. M. Polym. Chem. 2013, 4, 1345.  doi: 10.1039/C2PY20789C

  • 加载中
    1. [1]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    2. [2]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    9. [9]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(35)
  • Abstract views(2869)
  • HTML views(661)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return