Citation: Qiao Huijie, Sun Suyan, Kang Jianxun, Yang Fan, Wu Yusheng, Wu Yangjie. Copper-Catalyzed Decarboxylative Coupling of Alkenyl Acids with P(O)H Compounds at Room Temperature[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 86-94. doi: 10.6023/cjoc201708049 shu

Copper-Catalyzed Decarboxylative Coupling of Alkenyl Acids with P(O)H Compounds at Room Temperature

  • Corresponding author: Yang Fan, yangf@zzu.edu.cn Wu Yusheng, yusheng.wu@tetranovglobal.com Wu Yangjie, wyj@zzu.edu.cn
  • Received Date: 23 August 2017
    Revised Date: 20 September 2017
    Available Online: 26 January 2017

    Fund Project: the National Natural Science Foundation of China 21172200the National Natural Science Foundation of China 21102134Project supported by the National Natural Science Foundation of China (Nos. 21102134, 21172200)

Figures(3)

  • A simple and mild protocol for the copper-catalyzed decarboxylative coupling of alkenyl acids with P(O)H compounds was developed, thus providing a facile route to the vinylphosphorus compounds. Moreover, the reaction could also afford β-ketophosphorus compounds as the major products in air using oxygen as an oxidant. In addition, the remarkable features of these two types of reactions include excellent reaction chemoselectivity, good functional group tolerance and mild reaction conditions (e.g., cheap oxidant, ligand-free condition and room temperature).
  • 加载中
    1. [1]

      (a) Minami, T. ; Motoyoshiya, J. Synthesis 1992, 333.
      (b) Wang, H. -Q. ; Liu, Z. -J. Chin. J. Org. Chem. 2003, 23, 321.

    2. [2]

      (a) Jin, S. ; Gonsalves, K. E. Macromolecules 1998, 31, 1010.
      (b) Price, D. ; Pyrah, K. ; Hull, T. R. ; Milnes, G. J. ; Ebdon, J. R. ; Hunt, B. J. ; Joseph, P. Polym. Degrad. Stab. 2002, 77, 227.

    3. [3]

      (a) Harnden, M. R. ; Parkin, A. ; Parratt, M. J. ; Perkins, R. M. J. Med. Chem. 1993, 36, 1343.
      (b) Lazrek, H. B. ; Rochdi, A. ; Khaider, H. ; Barascut, J. -L. ; Imbach, J. -L. ; Balzarini, J. ; Witvrouw, M. ; Pannecouque, C. ; De Clercq, E. Tetrahedron 1998, 54, 3807.

    4. [4]

      (a) Chatterjee, A. K. ; Choi, T. -L. ; Grubbs, R. H. Synlett 2001, 1034.
      (b) Bisaro, F. ; Gouverneur, V. Tetrahedron Lett. 2003, 44, 7133.
      (c) Vinokurov, N. ; Michrowska, A. ; Szmigielska, A. ; Drzazga, Z. ; Wójciuk, G. ; Demchuk, O. M. ; Grela, K. ; Pietrusiewicz, K. M. ; Butensch n, H. Adv. Synth. Catal. 2006, 348, 931.

    5. [5]

      (a) Al-Maksoud, W. ; Mesnager, J. ; Jaber, F. ; Pinel, C. ; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222.
      (b) Burini, A. ; Cacchi, S. ; Pace, P. ; Pietroni, B. R. Synlett 1995, 677.
      (c) Kabalka, G. W. ; Guchhait, S. K. ; Naravane, A. Tetrahedron Lett. 2004, 45, 4685.

    6. [6]

      (a) Mao, L. -L. ; Zhou, A. -X. ; Liu, N. ; Yang, S. -D. Synlett 2014, 25, 2727.
      (b) Gui, Q. ; Hu, L. ; Chen, X. ; Liu, J. ; Tan, Z. Chem. Commun. 2015, 51, 13922.
      (c) Zhang, G. -Y. ; Li, C. -K. ; Li, D. -P. ; Shoberu, A. ; Zou, J. -P. Tetrahedron 2016, 72, 2972.
      (d) Peng, P. ; Lu, Q. ; Peng, L. ; Liu, C. ; Wang. G. ; Lei, A. Chem. Commun. 2016, 52, 12338.
      (e) Gu, J. ; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.

    7. [7]

      (a) Russell, G. A. ; Ngoviwatchai, P. ; Tashtoush, H. I. ; Pla-Dalmau, A. ; Khanna, R. K. J. Am. Chem. Soc. 1988, 110, 3530. (b(c) Evano, G. ; Tadiparthi, K. ; Couty, F. Chem. Commun. 2011, 47, 179.
      (d) Xu, K. ; Hu, H. ; Yang, F. ; Wu, Y. Eur. J. Org. Chem. 2013, 319.
      (e) Jouvin, K. ; Coste, A. ; Bayle, A. ; Legrand, F. ; Karthikeyan, G. ; Tadiparthi, K. ; Evano, G. Organometallics 2012, 31, 7933.
      (f) Liu, L. ; Wang, Y. ; Zeng, Z. ; Xu, P. ; Gao, Y. ; Yin, Y. ; Zhao, Y. Adv. Synth. Catal. 2013, 355, 659.
      (g) Iranpoor, N. ; Firouzabadi, H. ; Moghadam, K. R. ; Motavalli, S. RSC Adv. 2014, 4, 55732.

    8. [8]

      Lin, Y.; Lu, G.; Wang, R.; Yi, W. Org. Lett. 2017, 19, 1100.  doi: 10.1021/acs.orglett.7b00126

    9. [9]

      (a) Kabalka, G. W. ; Guchhait, S. K. Org. Lett. 2003, 5, 729.
      (b) Zhuang, R. ; Xu, J. ; Cai, Z. ; Tang, G. ; Fang, M. ; Zhao, Y. Org. Lett. 2011, 13, 2110.

    10. [10]

      (a) Xue, J. -F. ; Zhou, S. -F. ; Liu, Y. -Y. ; Pan, X. ; Zou, J. -P. ; Asekun, O. T. Org. Biomol. Chem. 2015, 13, 4896.
      (b) Yuan, J. -W. ; Yang, L. -R. ; Mao, P. ; Qu, L. -B. RSC Adv. 2016, 6, 87058.
      (c) Yuan, J. -W. ; Li, Y. -Z. ; Mai, W. -P. ; Yang, L. -R. ; Qu, L. -B. Tetrahedron 2016, 72, 3084.

    11. [11]

      Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681.  doi: 10.1021/ol047516y

    12. [12]

      (a) Han, L. -B. ; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.
      (b) Zhao, C. -Q. ; Han, L. -B. ; Goto, M. ; Tanaka, M. Angew. Chem. Int. Ed. 2001, 40, 1929.
      (c) Han, L. -B. ; Zhao, C. -Q. ; Onozawa, S. -Y. ; Goto, M. ; Tanaka, M. J. Am. Chem. Soc. 2002, 124, 3842.
      (d) Lai, C. ; Xi, C. ; Chen, C. ; Ma, M. ; Hong, X. Chem. Commun. 2003, 2736.
      (e) Han, L. -B. ; Zhang, C. ; Yazawa, H. ; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.
      (f) Kuramshin, A. I. ; Nikolaev, A. A. ; Cherkasov, R. A. Mendeleev Commun. 2005, 15, 155.
      (g) Nune, S. K. ; Tanaka, M. Chem. Commun. 2007, 2858.
      (h) Niu, M. ; Fu, H. ; Jiang, Y. ; Zhao, Y. Chem. Commun. 2007, 272.
      (i) Han, L. -B. ; Ono, Y. ; Shimada, S. J. Am. Chem. Soc. 2008, 130, 27.
      (j) Ananikov, V. P. ; Khemchyan, L. L. ; Beletskaya, I. P. ; Starikova, Z. A. Adv. Synth. Catal. 2010, 352, 2979.
      (k) Khemchyan, L. L. ; Lvanova, J. V. ; Zalesskiy, S. S. ; Ananikov, V. P. ; Beletskaya, I. P. ; Starikova, Z. A. Adv. Synth. Catal. 2014, 356, 771.
      (l) Liu, L. ; Wu, Y. ; Wang, Z. ; Zhu, J. ; Zhao, Y. J. Org. Chem. 2014, 79, 6816.
      (m) Braun, R. A. ; Bradfield, J. L. ; Henderson, C. B. ; Mobarrez, N. ; Sheng, Y. ; O'Brien, R. A. ; Stenson, A. C. ; Davis Jr., J. H. ; Mirjafari, A. Green Chem. 2015, 17, 1259.

    13. [13]

      (a) Borah, A. J. ; Yan, G. Org. Biomol. Chem. 2015, 13, 8094.
      (b) Chary, V. S. ; Rajanna, K. C. ; Krishnaiaha, G. ; Srinivas, P. Catal. Sci. Technol. 2016, 6, 1430.
      (c) Cai, S. ; Xu, Y. ; Chen, D. ; Li, L. ; Chen, Q. ; Huang, M. ; Weng, W. Org. Lett. 2016, 18, 2990.
      (d) Zhang, H. -R. ; Chen, D. -Q. ; Han, Y. -P. ; Qiu, Y. -F. ; Jin, D. -P. ; Liu, X. -Y. Chem. Commun. 2016, 52, 11827.
      (e) Kadari, L. ; Palakodety, R. K. ; Yallapragada, L. P. Org. Lett. 2017, 19, 2580.

    14. [14]

      Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.; Liang, Y.-M.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 5516.  doi: 10.1002/chem.v17.20

    15. [15]

      Wu, Y.; Liu, L.; Yan, K.; Xu, P.; Gao, Y.; Zhao Y. J. Org. Chem. 2014, 79, 8118.  doi: 10.1021/jo501321m

    16. [16]

      Qiao, H.; Sun, S.; Zhang, Y.; Zhu, H.; Yu, X.; Yang, F.; Wu, Y.; Li, Z.; Wu, Y. Org. Chem. Front. 2017, 4, 1981.  doi: 10.1039/C7QO00305F

    17. [17]

      Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 9727.  doi: 10.1021/ja301764m

    18. [18]

      Hu, G.; Gao, Y.; Zhao, Y. Org. Lett. 2014, 16, 4464.  doi: 10.1021/ol502009b

    19. [19]

      Kondoh, A; Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2008, 81, 502.  doi: 10.1246/bcsj.81.502

    20. [20]

      Harmata, M.; Rayanil, K.; Espejo, V. R.; Barnes, C. L. J. Org. Chem. 2009, 74, 3214.  doi: 10.1021/jo900151d

    21. [21]

      Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 6604.  doi: 10.1002/anie.201501287

    22. [22]

      Zhang, P.; Zhang, L.; Gao, Y.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 7839.  doi: 10.1039/C5CC01904D

    23. [23]

      Miyaji, T.; Xi, Z.; Ogasawara, M.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2007, 72, 8737.  doi: 10.1021/jo071089v

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    5. [5]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    6. [6]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    7. [7]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    8. [8]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    9. [9]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    10. [10]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    11. [11]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    12. [12]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    13. [13]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    16. [16]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    20. [20]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

Metrics
  • PDF Downloads(11)
  • Abstract views(1958)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return