Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C-H Bond Functionalization
- Corresponding author: Gu Qing, qinggu@sioc.ac.cn You Shuli, slyou@sioc.ac.cn
Citation:
Huang Jiapian, Gu Qing, You Shuli. Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C-H Bond Functionalization[J]. Chinese Journal of Organic Chemistry,
;2018, 38(1): 51-61.
doi:
10.6023/cjoc201708030
(a) Hayashi, T.; Togni, A. Ferrocenes, VCH, Weinheim, Germany, 1995.
(b) Togni, A.; Haltermann, R. L. Metallocenes, VCH, Weinheim, Germany, 1998.
(c) Štěpnička, P. Ferrocenes, Wiley, Chichester, 2008.
(d) Dai, L.-X.; Hou, X.-L. Chiral Ferrocenes in Asymmetric Catalysis, Wiley, Weinheim, 2010.
(a) Blaser, H.-U.; Brieden, W.; Pugin, B.; Spindler, F.; Studer, M.; Togni, A. Top. Catal. 2002, 19, 3.
(b) Blaser, H.-U.; Pugin, B.; Spindler, F. J. Mol. Catal. A 2005, 231, 1.
(a) Battelle, L. F.; Bau, R.; Gokel, G. W.; Oyakawa, R. T.; Ugi, I. K. J. Am. Chem. Soc. 1973, 95, 482.
(b) Rebière, F.; Riant, O.; Ricard, L.; Kagan, H. B. Angew. Chem., Int. Ed. 1993, 32, 568.
(c) Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse, M. B. Synlett 1995, 74.
(d) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685.
(e) Enders, D.; Peters, R.; Lochtman, R.; Raabe, G. Angew. Chem., Int. Ed. 1999, 38, 2421.
(f) Laufer, R. S.; Veith, U.; Taylor, N. J.; Snieckus, V. Org. Lett. 2000, 2, 629.
(g) Bolm, C.; Kesselgruber, M.; Muñiz, K.; Raabe, G. Organometallics 2000, 19, 1648.
(h) Bolm, C.; Kesselgruber, M.; Raabe, G. Organometallics 2002, 21, 707.
(i) Genet, C.; Canipa, S. J.; O'Brein, P.; Taylor, S. J. Am. Chem. Soc. 2006, 128, 9336.
For a review on kinetic resolution:(j) Alba, A.-N.; Rios, R. Molecules 2009, 14, 4747.
(k) Mercier, A.; Yeo, W. C.; Chou, J.; Chaudhuri, P. D.; Bernardinelli, G.; Kündig, E. P. Chem. Commun. 2009, 5227.
(l) Mercier, A.; Urbaneja, X.; Yeo, W. C.; Chaudhuri, P. D.; Cumming, G. R.; House, D.; Bernardinelli, G.; Kündig, E. P. Chem.-Eur. J. 2010, 16, 6285.
(m) Ogasawara, M.; Arae, S.; Watanabe, S.; Nakajima, K.; Takahashi, T. Chem.-Eur. J. 2013, 19, 4151.
For reviews and book, see:
(a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(b) Peng, H. M.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2010, 49, 5826.
(c) Wencel-Delord, J.; Colobert, F. Chem.-Eur. J. 2013, 19, 14010.
(d) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927.
(e) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
(f) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(g) You, S.-L. Asymmetric Functionalization of C-H Bonds, RSC, Cambridge, U.K., 2015.
(h) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351.
(i) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
Xia, J.-B.; You, S.-L. Organometallics 2007, 26, 4869.
doi: 10.1021/om700806e
Takebayashi, S.; Shizuno, T.; Otani, T.; Shibata, T. Beilstein J. Org. Chem. 2012, 8, 1844.
doi: 10.3762/bjoc.8.212
Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1997, 36, 2456.
doi: 10.1002/(ISSN)1521-3773
(a) Sokolov, V. I.; Troitskaya, L. L. Chimia 1978, 32, 122.
(b) Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1979, 182, 537.
(c) Günay, M. E.; Richards, C. J. Organometallics 2009, 28, 5833.
(a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
(b) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(c) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
(d) Musaev, D. G.; Kaledin, A.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 1690.
(e) Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
(f) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Science 2014, 346, 451.
(g) Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.
(h) Laforteza, B. N.; Chan, K. S. L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2015, 54, 11143.
(i) Xiao, K.-J.; Chu, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2856.
(j) Xiao, K.-J.; Chu, L.; Chen, G.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 7796.
Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86.
doi: 10.1021/ja311082u
Cheng, G.-J.; Chen, P.; Sun, T.-Y.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D. Chem. Eur. J. 2015, 21, 11180.
doi: 10.1002/chem.v21.31
Gair, J.-J.; Haines, B.-E.; Filatov, A.-S.; Musaev, D.-G.; Lewis, J.-C. Chem. Sci. 2017, 8, 5746.
doi: 10.1039/C7SC01674C
Pi, C.; Li, Y.; Cui, X.-L.; Zhang, H.; Han, Y.-B.; Wu, Y.-J. Chem. Sci. 2013, 4, 2675.
doi: 10.1039/c3sc50577d
Shi, Y.-C.; Yang, R.-F.; Gao, D.-W.; You, S.-L. Beilstein J. Org. Chem. 2013, 9, 1891.
doi: 10.3762/bjoc.9.222
Zhang, H.; Cui, X.-L.; Yao, X.-Y.; Wang, H.; Zhang, J.-Y.; Wu, Y.-J. Org. Lett. 2012, 14, 3012.
doi: 10.1021/ol301063k
Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544.
doi: 10.1021/jacs.6b00127
Pi, C.; Cui, X.-L.; Liu, X.-Y.; Guo, M.X.; Zhang, H.-Y.; Wu, Y.-J. Org. Lett. 2014, 16, 5164.
doi: 10.1021/ol502509f
Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 4841.
doi: 10.1021/ja500444v
Fukuzawa, S.-I.; Yamamoto, M.; Hosaka, M.; Kikuchi, S. Eur. J. Org. Chem. 2007, 5540.
Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Gu, Z. J. Am. Chem. Soc. 2014, 136, 4472.
doi: 10.1021/ja500699x
Zhang, S.; Lu, J.; Ye, J.; Duan, W.-L. Chin. J. Org. Chem. 2016, 36, 752(in Chinese).
(a) Nottingham, C.; Müller-Bunz, H.; Guiry, P. J. Angew. Chem., Int. Ed. 2016, 55, 11115.
(b) Nottingham, C.; Müller-Bunz, H.; McGlinchey, M. J.; Guiry, P. J. Eur. J. Org. Chem. 2017, 2848.
(a) Ma, X.; Gu, Z. RSC. Adv. 2014, 4, 36241.
(b) Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li, F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Org. Lett. 2014, 16, 5336.
Gao, D.-W.; Zheng, C.; Gu, Q.; You, S.-L. Organometallics 2015, 34, 4618.
doi: 10.1021/acs.organomet.5b00730
Gao, D.-W.; Gu, Y.; Wang, S.-B.; Gu, Q.; You, S.-L. Organometallics 2016, 35, 3227.
doi: 10.1021/acs.organomet.6b00569
(a) Shibata, T.; Shizuno, T. Angew. Chem., Int. Ed. 2014, 53, 5410.
(b) Takebayashi, S.; Shibata, T. Organometallics 2012, 31, 4114.
(a) Shibata, T.; Shizuno, T.; Sasaki, T. Chem. Commun. 2015, 51, 7802.
(b) Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W. Angew. Chem., Int. Ed. 2015, 54, 6918.
(c) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Org. Lett. 2015, 17, 3102.
Wang, S.-B.; Zheng, J.; You, S.-L. Organometallics 2016, 35, 1420.
doi: 10.1021/acs.organomet.6b00020
Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
doi: 10.1021/ja102571b
Urbano, A.; Hernández-Torres, G.; del Hoyo, A. M.; Martínez-Carrión, A.; Carre o, M. C. Chem. Commun. 2016, 52, 6419.
doi: 10.1039/C6CC02624A
Shibata, T.; Uno, N.; Sasaki, T.; Kanyiva, K. S. J. Org. Chem. 2016, 81, 6266.
doi: 10.1021/acs.joc.6b00825
Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
doi: 10.1021/jo025962y
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Haiying Wang , Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004