Citation: Xiao Mingyan, Zhu Shuai, Shen Yaobin, Wang Liang, Xiao Jian. Construction of Chiral Cyclic Compounds via Asymmetric Cascade[1, n]-Hydride Transfer/Cyclization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(2): 328-340. doi: 10.6023/cjoc201708024 shu

Construction of Chiral Cyclic Compounds via Asymmetric Cascade[1, n]-Hydride Transfer/Cyclization

  • Corresponding author: Wang Liang, liangwang0532@yeah.net
  • Received Date: 13 August 2017
    Revised Date: 19 September 2017
    Available Online: 16 February 2017

    Fund Project: the Open Project Program of Hubei Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology OPP2015ZD02the Talents of High Level Scientific Research Foundation of Qingdao Agricultural University 6631115015Project supported by the Open Project Program of Hubei Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology (No. OPP2015ZD02) and the Talents of High Level Scientific Research Foundation of Qingdao Agricultural University (No. 6631115015)

Figures(20)

  • The C (sp3)-H adjacent to heteroatoms can be readily functionalized to C-C, C-N, C-O bonds etc. via cascade[1, n]-hydride transfer/cyclization, which shows high potency to construct 5-membered, 6-membered and all carbon rings. This intriguing cascade process can be employed to synthesize common skeletons of significant natural products and pharmaceutical molecules. Chiral amines, Lewis acids and Brønsted acids have been successfully utilized to catalyze the asymmetric cascade reaction.
  • 加载中
    1. [1]

    2. [2]

      (a) Girard, S. A. ; Knauber, T. ; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
      (b) Li, C. -J. Acc. Chem. Res. 2009, 42, 335.

    3. [3]

      (a) DiRocco, D. A. ; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.
      (b) Prier, C. K. ; Rankic, D. A. ; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.

    4. [4]

      Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.  doi: 10.1021/acs.orglett.7b00746

    5. [5]

      Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.  doi: 10.1039/B607547A

    6. [6]

    7. [7]

      (a) Haibach, M. C. ; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
      (b) Peng, B. ; Maulide, N. Chem. -Eur. J. 2013, 19, 13274.
      (c)Wang, L. ; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137.
      (d)Wang, L. ; Xiao, J. Top. Curr. Chem. 2016, 374, 17.

    8. [8]

      Pinnow, J. Ber. Dtsch. Chem. Ges. 1895, 28, 3039.  doi: 10.1002/(ISSN)1099-0682

    9. [9]

      (a) Alajarin, M. ; Bonillo, B. ; Marin-Luna, M. ; Sanchez-Andrada, P. ; Vidal, A. Chem. -Eur. J. 2013, 47, 16093.
      (b) Zhao, S. ; Shu, X. ; Ji, K. ; Zhou, A. ; He, T. ; Liu, X. ; Liang, Y. J. Org. Chem. 2011, 76, 1941.
      (c) Alajarin, M. ; Bonillo, B. ; Ortin, M. -M. ; Sanchez-Andrada, P. ; Vidal, A. Eur. J. Org. Chem. 2011, 1896.
      (d)Alajarin, M. ; Bonillo, B. ; Ortin, M. ; Sanchez-Andrada, P. ; Vidal, A. ; Orenes, R. Org. Biomol. Chem. 2010, 8, 4690.
      (e)Alajarin, M. ; Bonillo, B. ; Orenes, R. A. ; Ortin, M. M. ; Vidal, A. Org. Biomol. Chem. 2012, 10, 9523.

    10. [10]

      (a) Ruble, J. C. ; Hurd, A. R. ; Johnson, T. A. ; Sherry, D. A. ; Barbachyn, M. R. ; Toogood, P. L. ; Bundy, G. L. ; Graber, D. R. ; Kamilar, G. M. J. Am. Chem. Soc. 2009, 131, 3991.
      (b) Woelfling, J. ; Frank, É. ; Schneider, G. ; Tietze, L. Angew. Chem., Int. Ed. 1999, 38, 200.
      (c) Wölfling, J. ; Frank, E. ; Schneider, G. ; Tietze, L. F. Eur. J. Org. Chem. 1999, 3013.
      (d) Wölfling, J. ; Frank, E. ; Schneider, G. ; Tietze, L. F. Eur. J. Org. Chem. 2004, 90.

    11. [11]

      Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel, D. Org. Lett. 2009, 11, 129.  doi: 10.1021/ol802519r

    12. [12]

      (a) Mahlau, M. ; List, B. Angew. Chem., Int. Ed. 2013, 52, 518.
      (b) Du, Y. ; Luo, S. ; Gong, L. Tetrahedron Lett. 2011, 52, 7064.

    13. [13]

      Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.  doi: 10.1021/ja2014955

    14. [14]

      Cao, W.; Liu, X.; Wang, W.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 600.  doi: 10.1021/ol1028282

    15. [15]

      (a) Chen, L. ; Zhang, L. ; Lv, J. ; Cheng, J. ; Luo, S. Chem. -Eur. J. 2012, 18, 8891.
      (b) Zhang, L. ; Chen, L. ; Lv, J. ; Cheng, J. -P. ; Luo, S. Chem. -Asian J. 2012, 7, 2569.

    16. [16]

      Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 13226.  doi: 10.1021/ja905213f

    17. [17]

      Han, Y.; Han, W.; Hou, X.; Zhang, X.; Yuan, W. Org. Lett. 2012, 14, 4054.  doi: 10.1021/ol301559k

    18. [18]

      Cao, W.; Liu, X.; Guo, J.; Lin, L.; Feng, X. Chem. -Eur. J. 2015, 21, 1632.  doi: 10.1002/chem.201404327

    19. [19]

      Lin, X.; Mao, Z.; Mo, F. Synlett 2015, 27, 546.  doi: 10.1055/s-00000083

    20. [20]

      Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847.  doi: 10.1021/ja103786c

    21. [21]

      Suh, C. W.; Kim, D. Y. Org. Lett. 2014, 16, 5374.  doi: 10.1021/ol502575f

    22. [22]

      Suh, C. W.; Woo, S. B.; Kim, D. Y. Asian J. Org. Chem. 2014, 3, 399.  doi: 10.1002/ajoc.v3.4

    23. [23]

      Kang, Y. K.; Kim, D. Y. Chem. Commun. 2014, 50, 222.  doi: 10.1039/C3CC46710D

    24. [24]

      Kang, Y. K.; Kim, D. Y. Adv. Synth. Catal. 2013, 355, 3131.  doi: 10.1002/adsc.v355.16

    25. [25]

      He, Y. P.; Wu, H.; Chen, D. F.; Yu, J.; Gong, L. Z. Chem. -Eur. J. 2013, 19, 5232.  doi: 10.1002/chem.201300052

    26. [26]

      Suh, C. W.; Kwon, S. J.; Kim, D. Y. Org. Lett. 2017, 19, 1334.  doi: 10.1021/acs.orglett.7b00184

    27. [27]

      (a) Zhou, G. ; Liu, F. ; Zhang, J. Chem. -Eur. J. 2011, 17, 3101.
      (b) Zhou, G. ; Zhang, J. Chem. Commun. 2010, 46, 6593.

    28. [28]

      Wang, P. F.; Jiang, C. H.; Wen, X.; Xu, Q. L.; Sun, H. J. Org. Chem. 2015, 80, 1155.  doi: 10.1021/jo5026817

    29. [29]

      Jiao, Z.; Zhang, S.; He, C.; Tu, Y.; Wang, S.; Zhang, F.; Zhang, Y.; Li, H. Angew. Chem., Int. Ed. 2012, 51, 8811.  doi: 10.1002/anie.v51.35

    30. [30]

      Liao, S.; Sun, X. L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.  doi: 10.1021/ar800104y

    31. [31]

      Frank, É.; Schneider, G.; Kádár, Z.; Wölfling, J. Eur. J. Org. Chem. 2009, 3544.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(38)
  • Abstract views(2394)
  • HTML views(430)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return