Citation: Liu Qiang, Wang Bin, Peng Xiaoshui, Wong Henry N. C.. Effects of Additives in Iron-Catalyzed Cross-Coupling Reactions Involving Grignard Reagents[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 40-50. doi: 10.6023/cjoc201708006 shu

Effects of Additives in Iron-Catalyzed Cross-Coupling Reactions Involving Grignard Reagents

  • Corresponding author: Wong Henry N. C., hncwong@cuhk.edu.hk
  • Received Date: 4 August 2017
    Revised Date: 8 September 2017
    Available Online: 15 January 2017

    Fund Project: the RGC PolyUC5023-14Gthe National Natural Science Foundation of China and the Research Grants Council of Hong Kong, SAR (RGC) Joint Research Scheme N_CUHK451/13the Shenzhen Science and Technology Innovation Committee JCYJ20160608151520697the National Natural Science Foundation of China 21672181/21272199the RGC 403012/CUHK14309216/CUHK14303815Project supported by the National Natural Science Foundation of China (No. 21672181/21272199), the Shenzhen Science and Technology Innovation Committee (No. JCYJ20160608151520697), the National Natural Science Foundation of China and the Research Grants Council of Hong Kong, SAR (RGC) Joint Research Scheme (No. N_CUHK451/13), the RGC (Nos. 403012/CUHK14309216/CUHK14303815, PolyUC5023-14G), and the State Key Laboratory of Synthetic Chemistry and GHP/004/16GD from Innovation and Technology Commission

Figures(23)

  • Iron-catalyzed cross-coupling reactions between organometallic nucleophiles and organic halides as electrophiles represent one of the most powerful methods in the field of carbon-carbon bond construction. This review is concerned with the additive effect in iron-catalyzed cross-coupling reactions of Grignard reagents, whose results were published in recent years.
  • 加载中
    1. [1]

      (a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6723.
      (b) Negishi, E. -i. Angew. Chem., Int. Ed. 2011, 50, 6738.
      (c) Wu, X. -F. ; Anbarasan, P. ; Neumann, H. ; Beler, M. Angew. Chem., Int. Ed. 2010, 49, 9047.
      (d) Seechurn, C. C. C. J. ; Kitching, M. O. ; Colacot, T. J. ; Sniekus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
      (e) Jana, R. ; Pathak, T. P. ; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
      (f) Magano, J. ; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
      (g) Terao, J. ; Kambe, N. Acc. Chem. Res. 2008, 41, 1545.
      (h) Nicolaou, K. C. ; Bulger, P. G. ; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.

    2. [2]

      Plietker, B. Iron Catalysis in Organic Chemistry, Wiley-VCH, Weinheim, 2008.

    3. [3]

      (a) Tamura, M. ; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487.
      (b) Tamura, M. ; Kochi, J. K. Synthesis 1971, 303.
      (c) Neuman, S. ; Kochi, J. K. J. Org. Chem. 1975, 40, 599.
      (d) Smith, R. S. ; Kochi, J. K. J. Org. Chem. 1976, 41, 502.

    4. [4]

      (a) Bauer, I. ; Kn lker, H. -J. Chem. Rev. 2015, 115, 3170.
      (b) Bedford, R. B. ; Brenner, P. B. Topics in Organometallic Chemistry, Springer, Heidelberg, 2015.
      (c) Bedford, R. B. Acc. Chem. Res. 2015, 48, 1485.
      (d) Kuzmina, O. M. ; Steib, A. K. ; Moyeux, A. ; Cahiez, G. ; Knochel, P. Synthesis 2015, 47, 1696.
      (e) Nakamura, E. ; Hatakeyama, T. ; Ito, S. ; Ishizuka, K. ; Ⅱies, L. ; Nakamura, M. Org. React. 2014, 83, 1.
      (f) Sherry, B. D. ; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500.
      (g) Plietker, B. Iron Catalysis in Organic Chemistry, Wiley-VCH, Weinheim, 2008.

    5. [5]

      (a) Cahiez, G. ; Avedissian, H. Synthesis 1998, 1199.
      (b) Cahiez, G. ; Gager, O. ; Habiak, V. Synthesis 2008, 1199.
      (c) Cahiez, G. ; Habiak, V. ; Gager, O. Org. Lett. 2008, 10, 2389.

    6. [6]

      Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org. Chem. 2004, 69, 3943.  doi: 10.1021/jo0498866

    7. [7]

      Fürstner, A.; Hannen, P. Chem.-Eur. J. 2006, 12, 3006.  doi: 10.1002/(ISSN)1521-3765

    8. [8]

      (a) Le, M. P. ; Tsui, G. C. ; Whitney, J. C. C. ; Tam, W. J. Org. Chem. 2008, 73, 7829.
      (b) Tsui, G. C. ; Le, M. P. ; Allen, A. ; Tam, W. Synthesis 2009, 609.

    9. [9]

      Camacho-Dávila, A. A. Synth. Commun. 2008, 38, 3823.  doi: 10.1080/00397910802238692

    10. [10]

      (a) Fürstner, A. ; Turet, L. Angew. Chem., Int. Ed. 2005, 44, 3462.
      (b) Fürstner, A. ; Souza, D. D. ; Turet, L. ; Fenster, M. D. B. ; Parra-Rapado, L. ; Wirtz, C. ; Mynott, R. ; Lehmann, C. W. Chem. -Eur. J. 2007, 13, 115.
      (c) Fürstner, A. ; Lehr, K. Tetrahedron 2012, 68, 7695.

    11. [11]

      Duplais, C.; Bures, F.; Sapountzis, I.; Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 2968.  doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Ottesen, L. K.; Ek, F.; Olssen, R. Org. Lett. 2006, 8, 1771.  doi: 10.1021/ol0600234

    13. [13]

      (a) Fürstner, A. ; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609.
      (b) Fürstner, A. ; Leitner, A. ; Méndez, M. ; Krause, H. J. Am. Chem. Soc. 2004, 124, 13856.

    14. [14]

      (a) Kumada, M. Pure Appl. Chem. 1980, 52, 669 and references cited therein.
      (b) Hayashi, T. ; Konishi, M. ; Kobori, Y. ; Kumada, M. ; Higuchi, T. ; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158.

    15. [15]

      Seidel, G.; Laurich, D.; Fürstner, A. J. Org. Chem. 2004, 69, 3950.  doi: 10.1021/jo049885d

    16. [16]

      Mattarella, M.; Siegel, J. S. Org. Biomol. Chem. 2012, 10, 5799.  doi: 10.1039/c2ob25503k

    17. [17]

      Malhotra, S.; Seng, P. S.; Koenig, S. G.; Deese, A. J.; Ford, K. A. Org. Lett. 2013, 15, 3698.  doi: 10.1021/ol401508u

    18. [18]

      Hocek, M.; Dvořáková, H. J. Org. Chem. 2003, 68, 5773.  doi: 10.1021/jo034351i

    19. [19]

      Cheung, C. W.; Ren, P.; Hu, X. Org. Lett. 2014, 16, 2566.  doi: 10.1021/ol501087m

    20. [20]

      (a) Nakamura, M. ; Matsuo, K. ; Ito, S. ; Nakamura, E. -I. J. Am. Chem. Soc. 2004, 126, 3686.
      (b) Guérinot, A. ; Reymond, S. ; Cossy, J. Angew. Chem., Int. Ed. 2007, 46, 6521.
      (c) Cahiez, G. ; Duplais, C. ; Moyeux, A. Org. Lett. 2007, 9, 3253.
      (d) Denmark, S. E. ; Cresswell, A. J. J. Org. Chem. 2013, 78, 12593.
      (e) Bensoussan, C. ; Rival, N. ; Hanquet, G. ; Colobert, F. ; Reymond, S. ; Cossy, J. Tetahedron 2013, 69, 7759.

    21. [21]

      (a) Bedford, R. B. ; Bruce, D. W. ; Frost, R. M. ; Hird, M. Chem. Commun. 2005, 4161.
      (b) Cahiez, G. ; Habiak, V. ; Duplais, C. ; Moyuex, A. Angew. Chem., Int. Ed. 2007, 46, 4364.
      (c) Rushworth, P. J. ; Hulcoop, D. J. ; Fox, D, J. J. Org. Chem. 2013, 78, 9517.

    22. [22]

      Czaplik, W. M.; Mayer, M.; von Wangelin, A. J. Angew. Chem., Int. Ed. 2009, 48, 607.  doi: 10.1002/anie.v48:3

    23. [23]

      (a) Noda, D. ; Sunada, Y. ; Hatakeyama, T. ; Nakamura, M. ; Nagashima, H J. Am. Chem. Soc. 2009, 131, 6078.
      (b) Bedford, R. B. ; Brenner, P. B. ; Carter, E. ; Cogswell, P. M. ; Haddow, M. F. ; Harvey, J. N. ; Murphy, D. M. ; Nunn, J. ; Woodall, C. H. Angew. Chem., Int. Ed. 2014, 53, 1804.
      (c) Bedford, R. B. ; Betham, M. ; Bruce, D. W. ; Davis, S. A. ; Frost, R. M. ; Hird, M. Chem. Commun. 2006, 1398.

    24. [24]

      Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird, M. J. Org. Chem. 2006, 71, 1104.  doi: 10.1021/jo052250+

    25. [25]

      Bica, K.; Gaertner, P. Org. Lett. 2006, 8, 733.  doi: 10.1021/ol052965z

    26. [26]

      Ghorai, S. K.; Jin, M.; Hatakeyama, T.; Nakamura, M. Org. Lett. 2012, 14, 1066.  doi: 10.1021/ol2031729

    27. [27]

      Guisán-Ceinos, M.; Tato, F.; Bu uel, E.; Calle, P.; Cárdenas, F. J. Chem. Sci. 2013, 4, 1098.  doi: 10.1039/c2sc21754f

    28. [28]

      (a) Hatakeyama, T. ; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844.
      (b) Hatakeyama, T. ; Hashimoto, S. ; Ishizuka, K. ; Nakamura, M. J. Am. Chem. Soc. 2009, 131, 11949.

    29. [29]

      Chua, Y.-Y.; Duong, H. A. Chem. Commun. 2014, 50, 8424.  doi: 10.1039/c4cc02930e

    30. [30]

      (a) Silberstein, A. L. ; Ramgren, S. D. ; Garg, N. K. Org. Lett. 2012, 14, 3796.
      (b) Mesganaw, T. ; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29.

    31. [31]

      Perry, M. C.; Gillett, A. N.; Law, T. C. Tetrahedron Lett. 2012, 53, 4436.  doi: 10.1016/j.tetlet.2012.06.048

    32. [32]

      Agrawal, T.; Cook, S. P. Org. Lett. 2013, 15, 96.  doi: 10.1021/ol303130j

    33. [33]

      (a) Li, B. -J. ; Xu, L. ; Wu, Z. -H. ; Guan, B. -T. ; Sun, C. -L. ; Wang, B. -Q. ; Shi, Z. -J. J. Am. Chem. Soc. 2009, 131, 14656.
      (b) Li, B. -J. ; Zhang, X. -S. ; Shi, Z. -J. Org. Synth. 2014, 91, 83.

    34. [34]

      Dongol, K. G.; Koh, H.; Sau, M.; Chai, C. L. L. Adv. Synth. Catal. 2007, 349, 1015.  doi: 10.1002/(ISSN)1615-4169

    35. [35]

      (a) Hatakeyama, T. ; Hashimoto, T. ; Kondo, Y. ; Fujiwara, Y. ; Seike, H. ; Takaya, H. ; Tamada, Y. ; Ono, T. ; Nakamura, M. J. Am. Chem. Soc. 2010, 132, 10674.
      (b) Hatakeyama, T. ; Fujiwara, Y. -I. ; Okada, Y. ; Itoh, T. ; Hashimoto, T. ; Kawamura, S. ; Ogata, K. ; Takaya, H. ; Nakamura, M. Chem. Lett. 2011, 40, 1030.
      (c) Kawamura, S. ; Nakamura, M. Chem. Lett. 2013, 42, 183.

    36. [36]

      Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Angew. Chem., Int. Ed. 2011, 50, 10973.  doi: 10.1002/anie.v50.46

    37. [37]

      Sun, C.-L.; Krause, H.; Fürstner, A. Adv. Synth. Catal. 2014, 356, 1281.  doi: 10.1002/adsc.v356.6

    38. [38]

      Jin, M.; Adak, L.; Nakamura, M. J. Am. Chem. Soc. 2015, 137, 7128.  doi: 10.1021/jacs.5b02277

    39. [39]

      Li, J. H.; Liu, K. M.; Duan, X. F.; Liu, J. B. Chin. J. Org. Chem. 2017, 37, 314(in Chinese).  doi: 10.6023/cjoc201608009

  • 加载中
    1. [1]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    2. [2]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    3. [3]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    6. [6]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    9. [9]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    12. [12]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    13. [13]

      Yadong LiFeng-Huan DuJunjie LiJun XuZhifang YangShanshan LiChi ZhangYunfei Du . Preparation of benziodazole-triflate and its application as both 2-iodobenzamido- and triflate-transfer reagents. Chinese Chemical Letters, 2025, 36(6): 110338-. doi: 10.1016/j.cclet.2024.110338

    14. [14]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    15. [15]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    16. [16]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    17. [17]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    18. [18]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    19. [19]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    20. [20]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

Metrics
  • PDF Downloads(31)
  • Abstract views(4163)
  • HTML views(403)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return