Citation: Liu Ruijiao, Zeng Jing. Study on a Novel Colorimetric and Off-On Fluorescent Chemosensor with Aggregation-Induced Emission Effect for Detection of Fe3+ in Aqueous Solution[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3274-3281. doi: 10.6023/cjoc201706037 shu

Study on a Novel Colorimetric and Off-On Fluorescent Chemosensor with Aggregation-Induced Emission Effect for Detection of Fe3+ in Aqueous Solution

  • Corresponding author: Zeng Jing, zengjing800111@163.com; lrjxjnu@163.com
  • Received Date: 28 June 2017
    Revised Date: 8 August 2017
    Available Online: 15 December 2017

    Fund Project: the Doctoral Scientific Research Foundation of Xinjiang Normal University XJNUBS1508Project supported by the Natural Science Foundation of Xinjiang Uygur Aotonomous Region (No. 2015211B024) and the Doctoral Scientific Research Foundation of Xinjiang Normal University (No. XJNUBS1508)the Natural Science Foundation of Xinjiang Uygur Aotonomous Region 2015211B024

Figures(11)

  • A novel tetraphenylethyene-functionalized rhodamine derivative (TPE-RhB) was designed and synthesized. FT-IR, NMR, MS, elemental analysis, cyclic voltammetry electrochemical analysis, UV-Vis, and molecular fluorescence were used to study its structure, electrochemical and optical properties. These results showed that the electron affinity of TPE-RhB was 3.66 eV, which is expected to develop electron-transporting material. A significant aggregation-induced emission (AIE) effect of TPE-RhB was found through solution fluorescence test in different V(EtOH):V(H2O) mixed solvents. Furthermore, sensor TPE-RhB displayed highly seletive and sensitive off-on fluorescence response and naked-eye color change to Fe3+ in EtOH/H2O (V:V=1:1, Tris-HCl pH 7.0) solution. The association constant between TPE-RhB and Fe3+ was detected to be 3.12×103 and the detection limit was calculated to be 3.53×10-7 mol·L-1. The probe TPE-RhB also showed a good linearity (R2=0.9915) in the range of 60~180 μmol/L of Fe3+ ion. The mechanisms had been supported by Job's plot evalution, fluorescence titrations, and 1H NMR spectroscopic studies.
  • 加载中
    1. [1]

      Luo, J.-D.; Xie, Z.-L.; Lam, J. W. Y.; Lin, C. Chem. Commun. 2001, 18, 1740.

    2. [2]

      You, X.; Zhang, G.-X.; Zhan, C.; Wang, Y.-C.; Zhang, D.-Q. ACS Symp. Ser. 2016, 93, 1227.

    3. [3]

      Wang, Q.; Li, Z.; Tao, D.-D.; Zhang, Q.; Zhang, P.; Guo, D.-P.; Jiang, Y.-B. Chem. Commun. 2016, 52, 12929.  doi: 10.1039/C6CC06075G

    4. [4]

      Zhang, G.-X.; Hu, F.; Zhang, D.-Q. Langmuir 2015, 31, 4593.  doi: 10.1021/la5029367

    5. [5]

      Wang, L.-Y.; Yang, L.-L.; Cao, D.-R. Curr. Org. Chem. 2014, 18, 1028.  doi: 10.2174/1385272819666140407214006

    6. [6]

      Yang, Y.; Huang, Y.-Y.; Zhang, G.-X.; Zhao, R.; Zhang, D.-Q. Acta Chim. Sinica 2016, 74, 871(in Chinese).  doi: 10.11862/CJIC.2016.115

    7. [7]

      Li, Z.-Z.; Huo, Y.-P.; Yang, X.-H.; Ji, S.-M. Chin. J. Org. Chem. 2016, 36, 2317(in Chinese).
       

    8. [8]

      Gabr, M. T.; Pigge, F. C. Dalton Trans. 2016, 45, 14039.  doi: 10.1039/C6DT02657E

    9. [9]

      Jiang, G.-Y.; Liu, X.; Wu, Y.-Q.; Wang, J.-G.; Dong, X.-B.; Zhang, G.-X.; Li, Y.-D.; Fan, X.-L. RSC Adv. 2016, 6, 59400.  doi: 10.1039/C6RA10878D

    10. [10]

      Xiong, J.-B.; Xie, W.-Z.; Sun, J.-P.; Wang, J.-H.; Zhu, Z.-H.; Feng, H.-T.; Guo, D.; Zhang, H.; Zheng, Y.-S. J. Org. Chem. 2016, 81, 3720.  doi: 10.1021/acs.joc.6b00371

    11. [11]

      Zhao, N.; Chen, S.-J.; Hong, Y.-N.; Tang, B.-Z. Chem. Commun. 2015, 51, 13599.  doi: 10.1039/C5CC04731E

    12. [12]

      Huang, J.; Li, Q.-Q.; Li, Z.-J. J. Mol. Eng. Mater. 2013, 1, 1.

    13. [13]

      Wu, F.; Shan, Y.-H.; Li, X.-L.; Song, Q.-L.; Zhu, L.-N. Org. Electron. 2016, 39, 323.  doi: 10.1016/j.orgel.2016.10.022

    14. [14]

      Wu, F.; Liu, J.-L.; Wang, G.; Song, Q.-L.; Zhu, L.-N. Chem. Eur. J. 2016, 22, 16636.  doi: 10.1002/chem.201603672

    15. [15]

      Zhao, D.-Y. ACS Symp. Ser. 2016, 2, 151.

    16. [16]

      Takeda, T.; Yamamoto, S.; Mitsuishi, M.; Akutagawa, T. Org. Biomol. Chem. 2016, 14, 8922.  doi: 10.1039/C6OB01110A

    17. [17]

      Ramya, A. N.; Joseph, M. M.; Nair, J. B.; Karunakaran, V.; Narayanan, N.; Maiti, K. K. ACS Appl. Mater. Inter. 2016, 8, 10220.  doi: 10.1021/acsami.6b01908

    18. [18]

      Huang, J.; Yang, M.; Yang, J.; Tang, R.; Ye, S.; Li, Q.; Li, Z. Org. Chem. Front. 2015, 12, 1608.
       

    19. [19]

      Lu, D.-Q.; He, L.; Wang, Y.-Y.; Xiong, M.-Y.; Hu, M.-M.; Liang, H.; Huan, S.-Y.; Zhang, X.-B.; Tan, W.-H. Talanta 2017, 167, 550.  doi: 10.1016/j.talanta.2017.02.064

    20. [20]

      Akul, S. G.; Kamaldeep, P.; Vijay, L. Sens. Actuators, B 2017, 246, 653.  doi: 10.1016/j.snb.2017.02.080

    21. [21]

      Yan, Y.-Y.; Che, Z.-P.; Yu, X.; Zhi, X.-Y.; Wang, J.-J.; Xu, H. Bioorg. Med. Chem. 2013, 21, 508.  doi: 10.1016/j.bmc.2012.11.005

    22. [22]

      Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. Chem. Rev. 2012, 112, 1910.  doi: 10.1021/cr200201z

    23. [23]

      Sun, W.; Hu, D.-Y.; Wu, Z.-B.; Song, B.-A.; Yang, S. Chin. J. Org. Chem. 2011, 31, 997(in Chinese).
       

    24. [24]

      Liu, H.-Y.; Wan, X.-J.; Liu, T.-Q.; Li, Y.-Q.; Yao, Y.-W. Sens. Actuators, B 2014, 200, 191.  doi: 10.1016/j.snb.2014.04.027

    25. [25]

      Yan, L.-R.; Yang, M.-P.; Leng, X.; Zhang, M.; Long, Y.; Yang, B.-Q. Tetrahedron 2016, 72, 4361  doi: 10.1016/j.tet.2016.05.082

    26. [26]

      Fan, S.-M.; Yang, W.-G.; Hao, J.-F.; Li, H.-G.; Zhao, W.-D.; Zhang, J.; Hu, Y.-H. J. Photochem. Photobiol., A 2016, 328, 129.  doi: 10.1016/j.jphotochem.2016.05.017

    27. [27]

      Li, S.; Zhang, D.; Xie, X.-Y.; Ma, S.-G.; Xu, Z.-H.; Gao, Y.-F.; Ye, Y. Sens. Actuators, B 2016, 224, 661.  doi: 10.1016/j.snb.2015.10.086

    28. [28]

      Liu, X.-J.; Zhang, M.; Yang, M.-P.; Li, B.; Zhao, C.; Yang, B.-Q. Tetrahedron 2015, 71, 8194.  doi: 10.1016/j.tet.2015.08.031

    29. [29]

      Xiao, H.-F.; Zhang, M.; Liu, J.; Han, Z.-X.; Yang, L.-Q.; Wu, X.-Y. Chin. J. Org. Chem. 2016, 36, 2413(in Chinese).
       

    30. [30]

      Hou, S.-H.; Qu, Z.-G.; Zhong, K.-L.; Bian, Y.-J.; Tang, L.-J. Chin. J. Org. Chem. 2016, 36, 768(in Chinese).
       

    31. [31]

      Meng, W.-F.; Yang, M.-P.; Cheng, Z.; Li, S.-N.; Yang, B.-Q. Chin. J. Org. Chem. 2014, 34, 398(in Chinese).
       

    32. [32]

      Wu, F.; Tian, W.-J.; Shen, J.-E. Chin. J. Lumin. 1998, 19, 158(in Chinese). 

    33. [33]

      Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Sun, J. X.; Liu, J. Z.; Li, Z.; Sun, J. Z.; Sung, H. H. Y.; Williams, I. D.; Kwokc, H. S.; Tang, B. Z. Chem. Commun. 2007, 3255.
       

    34. [34]

      Liu, R.-J.; Zeng, J.; Wang, H. Chin. J. Lumin. 2017, 38, 862(in Chinese).
       

    35. [35]

      Zhou, Z.-G.; Yu, M.-X.; Li, F.-Y. Chem. Commun. 2008, 29, 3387.
       

    36. [36]

      Han, X.; Wang, D.-E.; Chen, S.; Zhang, L.-L.; Guo, Y.-D.; Wang, J.-Y. Anal. Methods 2015, 7, 4231.  doi: 10.1039/C5AY00568J

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    5. [5]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    15. [15]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

Metrics
  • PDF Downloads(10)
  • Abstract views(3029)
  • HTML views(1209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return