Citation: Zhang Xiaoxiang, Lü Chang, Li Ping, Yong Wanxiong, Li Jing, Zhu Xinbao. Rapid Access to 4H-3, 1-Benzoxazin-4-ones via Gold-Catalyzed One-Pot Oxidative Rearrangement of 2-Alkynyl Arylazides[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 208-214. doi: 10.6023/cjoc201706030 shu

Rapid Access to 4H-3, 1-Benzoxazin-4-ones via Gold-Catalyzed One-Pot Oxidative Rearrangement of 2-Alkynyl Arylazides

  • Corresponding author: Zhang Xiaoxiang, zhangxiaoxiang@njfu.edu.cn Zhu Xinbao, zhuxinbao@njfu.com.cn
  • Received Date: 23 June 2017
    Revised Date: 17 August 2017
    Available Online: 15 January 2017

    Fund Project: Young Natural Science Foundation of Jiangsu Province BK20130962the Young National Natural Science Foundation of China 21302096Postgraduate Research & Practice Innovation Program of Jiangsu Province KYLX16_0844Young Natural Science Foundation of Jiangsu Province BK20171449Project supported by the Project supported by the Young National Natural Science Foundation of China (No. 21302096), the Young Natural Science Foundation of Jiangsu Province (Nos. BK20171449, BK20130962), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYLX16_0844), and the Project Fund from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Figures(3)

  • The one-pot one-step synthetic method of 4H-3, 1-benzoxazin-4-ones via the gold-catalyzed oxidative rearrangement of 2-alkynyl arylazides has been developed. The desired products were obtained in moderate to excellent yields under mild reaction conditions. In most cases, using acetic acid as solvent the reactions were shown to proceed very fast within 1 h.
  • 加载中
    1. [1]

      (a) Padwal, R. Curr. Opin. Invest. Drugs 2008, 9, 414.
      (b) Eissa, A. M. F. ; El-Sayed, R. J. Heterocycl. Chem. 2006, 43, 1.
      (c) Neumann, U. ; Schechter, N. M. ; Gutschow, M. Bioorg. Med. Chem. 2001, 9, 947.
      (d) Gutschow, M. ; Neumann, U. Bioorg. Med. Chem. 1997, 5, 1935.
      (e) Krantz, A. ; Spencer, R. W. ; Tam, T. F. ; Liak, T. J. ; Copp, L. J. ; Thomas, E. M. ; Rafferty, S. P. J. Med. Chem. 1990, 33, 464.

    2. [2]

      (a) Krantz, A. ; Spencer, R. W. ; Tam, T. F. ; Liak, T. J. ; Copp, L. J. ; Thomas, E. M. ; Rafferty, S. P. J. Med. Chem. 1990, 33, 464.
      (b) Stein, R. L. ; Strimpler, A. M. ; Viscarello, B. R. ; Wildonger, R. A. ; Mauger, R. C. ; Trainor, D. A. Biochemistry 1987, 26, 4126.

    3. [3]

      For some examples, see: (a) Yamada, Y. ; Kato, T. ; Ogino, H. ; Ashina, S. ; Kato, K. Horm. Metab. Res. 2008, 40, 539.
      (b) Padwal, R. Curr. Opin. Invest. Drugs 2008, 9, 414.

    4. [4]

      Hedstrom, L.; Moorman, A. R.; Dobbs, J.; Abeles, R. H. Biochemistry 1984, 23, 1753.  doi: 10.1021/bi00303a026

    5. [5]

      Jarvest, R. L.; Parratt, M. J.; Debouck, C. M.; Gorniak, J. G.; Jennings, L. J.; Serafinowska, H. T.; Strickler, J. E. Bioorg. Med. Chem. Lett. 1996, 6, 2463.  doi: 10.1016/0960-894X(96)00455-6

    6. [6]

      (a) Li, W. F. ; Wu, X. F. J. Org. Chem. 2014, 79, 10410.
      (b) Yamashita, M. ; Iida, A. Tetrahedron Lett. 2014, 55, 2991.
      (c) Lian, X. L. ; Lei, H. ; Quan, X. J. ; Ren, Z. H. ; Wang, Y. Y. ; . Guan, Z. H. Chem. Commun. 2013, 49, 8196.
      (d) Ge, Z. Y. ; Xu, Q. M. ; Fei, X. D. ; Tang, T. ; Zhu, Y. M. ; Ji, S. J. J. Org. Chem. 2013, 78, 4524.
      (e) Xie, Y. Y. ; Wang, S. P. J. Chem. Res. 2012, 36, 123.
      (f) Wu X. F. ; Neumann, H. ; Beller, M. Chem. Eur. J. 2012, 18, 12599.
      (g) Kumar, R. A. ; Maheswari, C. U. ; Ghantasala, S. ; Jyothi, C. ; Reddy, K. R. Adv. Synth. Catal. 2011, 353, 401.
      (h) Xue, S. ; McKenna, J. ; Shieh, W. C. ; Repic, O. J. Org. Chem. 2004, 69, 6474.
      (i) Chenard, B. L. ; Welch, W. M. ; Blake, J. F. ; Butler, T. W. ; Reinhold, A. ; Ewing, F. E. ; Menniti, F. S. ; Pagnozzi, M. J. J. Med. Chem. 2001, 44, 1710.
      (j) Coppola, G. M. J. Heterocycl. Chem. 1999, 36, 563.
      (k) Larksarp, C. ; Alper, H. Org. Lett. 1999, 1, 1619.
      (l) Kotsuki, H. ; Sakai, H. ; Morimoto, H. ; Suenaga, H. Synlett 1999, 1993.
      (m) Cacchi, S. ; Fabrizi, G. ; Marinelli, F. Synlett 1996, 997.
      (n) Larock, R. C; . Fellows, C. A. J. Org. Chem. 1980, 45, 363.
      (o) Errede, L. A. J. Org. Chem. 1976, 41, 1763.
      (p) Jackson, T. G. ; Morris, S. R. ; Turner, R. H. J. Chem. Soc. 1968, 13, 1592.
      (q) Taylor, E. C. ; Knopf, R. I. ; Borror, A. L. J. Am. Chem. Soc. 1960, 82, 3152.

    7. [7]

      For recent examples on the synthesis of 4H-3, 1-benzoxazin-4-ones 3, see: (a) Wang, L. ; Xie, Y. -B; Huang, N. -Y. ; Yan, J. -Y. ; Hu, W. -M. ; Liu, M. -G. ; Ding, M. -W. ACS Catal. 2016, 6, 4010.
      (b) Verma, A. ; Kumar, S. Org. Lett. 2016, 18, 4388.
      (c) Arcadi, A. ; Chiarini, M. ; Vecchio, L. D. ; Marinelli, F. ; Michelet, V. Chem. Commun. 2016, 52, 1458.
      (d) Laha, J. K. ; Patel, K. V. ; Tummalapalli, K. S. S. ; Dayal, N. Chem. Commun. 2016, 52, 10245.
      (e) Prakash, R. ; Gogoi, S. Adv. Synth. Catal. 2016, 19, 3046.
      (f) Yu, J. ; Zhang-Negrerie, D. ; Du, Y. Eur. J. Org. Chem. 2016, 2016, 562.
      (g) Wu, X. F. ; Schranck, J. ; Neumann, H. ; Beller, M. Chem. -Eur. J. 2011, 17, 12246.
      (h) Liu, Q. ; Chen, P. ; Liu, G. ACS Catal. 2013, 3, 178.
      (i) Li, W. ; Wu, X. F. J. Org. Chem. 2014, 79, 10410.
      (j) Chavan, S. P. ; Bhanage, B. M. Eur. J. Org. Chem. 2015, 2015, 2405.
      (k) Munusamy, S. ; Venkatesan, S. ; Sathiyanarayanan, K. I. Tetrahedron Lett. 2015, 56, 203.
      (l) Larksarp, C. ; Alper, H. Org. Lett. 1999, 1, 1619.
      (m) Salvadori, J. ; Balducci, E. ; Zaza, S. ; Petricci, E. ; Taddei, M. J. Org. Chem. 2010, 75, 1841.
      (n) Nayak, M. K. ; Kim, B. H. ; Kwon, J. E. ; Park, S. ; Seo, J. ; Chung, J. W. ; Park, S. Y. Chem. -Eur. J. 2010, 16, 7437.

    8. [8]

      For recent selected reviews on gold-catalyzed reactions, see: (a) Harris, R. J. ; Widenhoefer, R. A. Chem. Soc. Rev. 2016, 45, 4533.
      (b) Asiri, A. M. ; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 4471.
      (c) Zheng, Z. ; Wang, Z. ; Wang, Y. ; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
      (d) Ziand, W. ; Toste, F. D. Chem. Soc. Rev. 2016, 45, 4567.
      (e) Huple, D. B. ; Ghorpade, S. ; Liu, R. -S. Adv. Synth. Catal. 2016, 358, 1348.
      (f) Dorel, R. ; Echavarren, A. M. Chem. Rev. 2015, 115, 9028.
      (g) Jia, M. ; Bandini, M. ACS Catal. 2015, 5, 1638.
      (h) Wang, Y. ; Muratore, M. E. ; Echavarren, A. M. Chem. Eur. J. 2015, 21, 7332.
      (i) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
      (j) Yeom, H. -S. ; Shin, S. Acc. Chem. Res. 2014, 47, 966.
      (k) Fensterbank, L. ; Malacria, M. Acc. Chem. Res. 2014, 47, 953.
      (l) Benitez, D. ; Shapiro, N. D. ; Tkatchouk, E. ; Wang, Y. ; God-dard Ⅲ, W. A. ; Toste, F. D. Nat. Chem. 2009, 1, 482.
      (m) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
      (n) Wu, W. -T. ; Zhang, L. ; You, S. -L. Acta Chim. Sinica 2017, 75, 419(in Chinese). (吴文挺, 张立明, 化学学报, 2017, 75, 419. )
      for recent selected examples, see: (o) Zhao, J. -R. ; Yuan, X. ; Wang, Z. ; Chen, S. ; Zhang, Z. -X. ; Xue, W. Org. Chem. Front. 2015, 2, 34.
      (p) Li, L. ; Zhou, B. ; Ye, L. Chin. J. Org. Chem. 2015, 35, 655(in Chinese). (李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655. )
      (q) Zhang, P. -C. ; Wang, Y. ; Qian, D. ; Li, W. ; Zhang, J. Chin. J. Chem. 2017, 35, 849.

    9. [9]

      For recent selected a review on the generation of α-imino gold carbenes, see: Davies, P. W. ; Garz n, M. Asian J. Org. Chem. 2015, 4, 694.

    10. [10]

      For recent selected examples, see: (a) Lonca, G. H. ; Tejo, C. ; Chan, H. L. ; Chiba, S. ; Gagosz, F. Chem. Commun. 2017, 53, 736.
      (b) Jin, H. ; Tian, B. ; Song, X. ; Xie, J. ; Rudolph, M. ; Rominger, F. ; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 12688.
      (c) Pan, Y. ; Chen, G. -W. ; Shen, C. -H. ; He, W. ; Ye, L. -W. Org. Chem. Front. 2016, 3, 391.
      (d) Li, N. ; Lian, X. -L. ; Li, Y. -H. ; Wang, T. -Y. ; Han, Z. -Y. ; Zhang, L. ; Gong, L. -Z. Org. Lett. 2016, 18, 4178.
      (e) Jin, H. ; Huang, L. ; Xie, J. ; Rudolph, M. ; Rominger, F. ; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794.
      (f) Zhou, A. -H. ; He, Q. ; Shu, C. ; Yu, Y. -F. ; Liu, S. ; Zhao, T. ; Zhang, W. ; Lu, X. ; Ye, L. -W. Chem. Sci. 2015, 6, 1265.
      (g) Xiao, X. -Y. ; Zhou, A. -H. ; Shu, C. ; Pan, F. ; Li, T. ; Ye, L-W. Chem. -Asian J. 2015, 10, 1854.
      (h) Shen, C. -H. ; Pan, Y. ; Yu, Y. -F. ; Wang, Z. -S. ; He, W. ; Li, T. ; Ye, L. -W. J. Organomet. Chem. 2015, 795, 63.
      (i) Li, N. ; Wang, T. -Y. ; Gong, L. -Z; Zhang, L. Chem. -Eur. J. 2015, 21, 3585.
      (j) Shu, C. ; Wang, Y. -H. ; Zhou, B. ; Li, X. -L. ; Ping, Y. -F. ; Lu, X. ; Ye, L. -W. J. Am. Chem. Soc. 2015, 137, 9567.
      (k) Zhu, L. ; Yu, Y. ; Mao, Z. ; Huang, X. Org. Lett. 2015, 17, 30.
      (l) Wu, Y. ; Zhu, L. ; Yu, Y. ; Luo, X. ; Huang, X. J. Org. Chem. 2015, 80, 11407.
      (m) Pawar, S. K. ; Sahani, R. L. ; Liu, R. -S. Chem. -Eur. J. 2015, 21, 10843.
      (n) Prechter, A. ; Henrion, G. ; dit Bel, P. F. ; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53, 4959.
      (o) Garzón M. ; Davies, P. W. Org. Lett. 2014, 16, 4850.
      (p) Tokimizu, Y. ; Oishi, S. ; Fujii, N. ; Ohno, H. Org. Lett. 2014, 16, 3138.
      (q) Chatzopoulou, E. ; Davies, P. W. Chem. Commun. 2013, 49, 8617.
      (r) Yan, Z. -Y. ; Xiao, Y. ; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 8624.
      (s) Xiao, Y. ; Zhang, L. Org. Lett. 2012, 14, 4662.
      (t) Lu, B. ; Luo, Y. ; Liu, L. ; Ye, L. ; Wang, Y. ; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 8358.
      (u) Wetzel, A. ; Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354.
      (v) Li, C. ; Zhang, L. Org. Lett. 2011, 13, 1738.
      (w) Davies, P. W. ; Cremones, A. ; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50, 8931.
      (x) Gorin, D. J. ; Davis, N. R. ; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.

    11. [11]

      For our recent studies on gold-catalyzed tandem reactions, see: (a) Chen, C. ; Zou, Y. ; Chen, X. ; Zhang, X. ; Rao, W. ; Chan, P. W. H. Org. Lett. 2016, 18, 4730.
      (b) Zhang, X. ; Sun, X. ; Fan, H. ; Lyu, C. ; Li, P. ; Zhang, H. ; Rao, W. RSC Adv. 2016, 6, 56319.
      (c) Zhang, X. ; Sun, X. ; Fan, H. ; Li, P. ; Lyu, C. ; Rao, W. Eur. J. Org. Chem. 2016, 25, 4265.
      (d) Zhang, X. ; Sun, X. ; Fan, H. ; Cui, X. ; Ma, M. Chin. J. Org. Chem. 2015, 35, 1469(in Chinese). (张小祥, 孙小萍, 张海飞, 崔杏丽, 马猛涛, 有机化学, 2015, 35, 1469. )

    12. [12]

      Wang, J.; Jiang, X.; Zhang, Y.; Zhu, Y.; Shen, J. Tetrahedron Lett. 2015, 56, 2349.  doi: 10.1016/j.tetlet.2015.03.121

    13. [13]

      Eid, A. I. Eur. J. Med. Chem. 1979, 14, 463.

  • 加载中
    1. [1]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    2. [2]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    3. [3]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    4. [4]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    5. [5]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    6. [6]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    7. [7]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    8. [8]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    9. [9]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    10. [10]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    11. [11]

      Chen-Chang CuiShao-Qing ShiLu-Yao WangFeng LinMan-Su TuWen-Juan HaoBo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541

    12. [12]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    13. [13]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    14. [14]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    15. [15]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    16. [16]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    17. [17]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    18. [18]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    19. [19]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    20. [20]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

Metrics
  • PDF Downloads(5)
  • Abstract views(2263)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return