Citation: Feng Zhichao, Mao Guoliang, Wu Wei, Luo Mingjian, Liu Yang. Synthesis of Phosphine Ligands Based on 5-Amino-o-cresol and Its Application in Ethylene Oligomerization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 698-704. doi: 10.6023/cjoc201706010 shu

Synthesis of Phosphine Ligands Based on 5-Amino-o-cresol and Its Application in Ethylene Oligomerization

  • Corresponding author: Mao Guoliang, maoguoliang@nepu.edu.cn Liu Yang, 
  • Received Date: 9 June 2017
    Revised Date: 28 July 2017
    Available Online: 28 March 2017

    Fund Project: the Program for New Century Excellent Talents in University NCET-07-0142the National Natural Science Foundation of China 51534004Project supported by the National Natural Science Foundation of China (Nos. 51534004, U1362110), and the Program for New Century Excellent Talents in University (No. NCET-07-0142)the National Natural Science Foundation of China U1362110

Figures(1)

  • A phosphorus ligand containing PNP and P-O structure was synthesized by substitution reaction of 5-amino-o-cresol with chlorodiphenylphosphine and its structure was conformed. Its in situ prepared complex with Cr(acac)3 and preformed complex with CrCl3(THF)3 were used as main catalysts in catalyzing ethylene oligomerization, accompanied with methylaluminoxane (MAO) as cocatalyst. The effects of solvent, temperature, pressure and Al/Cr molar ratio on the activity and selectivity of the catalyst were investigated and compared with the in situ formation of 2-aminophenol and 4-aminophenol phosphine ligands catalytic system of catalyzing ethylene oligomerization effect. The experimental results showed that the activity reached 5.91×106 g/(mol·Cr·h), when the reaction was carried at 50℃ with reaction pressure of 2.5 MPa and the Al/Cr molar ratio of 700. The selectivity of 1-octene was 72.94% and the total selectivity of 1-hexene and 1-octene was 82.11%.
  • 加载中
    1. [1]

      Skupinska, J. Chem. Rev. 1991, 91, 613.  doi: 10.1021/cr00004a007

    2. [2]

      Forestière, A.; Olivier-Bourbigou, H.; Saussine, L. Oil Gas Sci. Technol. 2009, 64, 649.  doi: 10.2516/ogst/2009027

    3. [3]

      Qian, B. Z. Petrochem. Ind. Technol. 2011, 18, 58 (in Chinese).
       

    4. [4]

      An, J. X. Synth. Lubr. 2016, 43, 14 (in Chinese).
       

    5. [5]

      Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass, D. F. Chem. Commun. 2002, 8, 858.

    6. [6]

      Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J Am Chem Soc. 2004, 126, 14712.  doi: 10.1021/ja045602n

    7. [7]

      Varga, V.; Hodik, T.; Lamac, M.; Horacek, M.; Zukal, A.; Zilkova, N.; Parker Jr, W. O.; Pinkas, J. J. Organomet. Chem. 2015, 777, 57.  doi: 10.1016/j.jorganchem.2014.11.013

    8. [8]

      Zhang, J.; Li, A.; Hor, T. S. A. Organometallics 2009, 28, 2935.  doi: 10.1021/om9002347

    9. [9]

      Xu, J. Y. Petrol Refine Chem Ind. 2014, 45, 67 (in Chinese).
       

    10. [10]

      Liu, S. L.; Yuan, W.; Luo, C. T. Aging Appl. Synth. Mater. 2016, 45, 132 (in Chinese).  doi: 10.3969/j.issn.1671-5381.2016.03.031

    11. [11]

      Wang, J.; Li, Y.; Li, C. Q.; Zhang, H. Z. Chem. Ind. Eng Prog. 2012, 31, 91 (in Chinese).
       

    12. [12]

      Wang, J.; Liang H. J.; Li, C. Q.; Shi, W. G. Chem. Ind. Eng. Prog. 2016, 35, 793 (in Chinese).
       

    13. [13]

      Wang, J.; Fu, Z. J.; Li, C. Q.; Shi, W. G.; Wang, S. H. Polym. Mater. Sci. Eng. 2016, 32, 176 (in Chinese).
       

    14. [14]

      Wang, J.; Gong, X. Y.; Li, C. Q.; Li, H. Y. Chem. Ind. Eng. Prog. 2012, 31, 2729 (in Chinese).
       

    15. [15]

      Yang, L. J.; Wang, W. Z.; Wu, Y. Chin. J. Chem. 2014, 77, 951 (in Chinese).
       

    16. [16]

      Li, C. Q.; Lin, Z. Y.; Wang, J.; Gong, X. Y.; Zhao, Q.; Wang, Y. R.; Shao, N. Synth. Chem. 2015, 23, 198 (in Chinese).
       

    17. [17]

      McGuinness, D. S. Chem. Rev. 2011, 111, 2321.  doi: 10.1021/cr100217q

    18. [18]

      Agapie, T. Coord. Chem. Rev. 2011, 255, 861  doi: 10.1016/j.ccr.2010.11.035

    19. [19]

      Bryliakov, K. P.; Talsi, E. P. Coord. Chem. Rev. 2012, 256, 2994.  doi: 10.1016/j.ccr.2012.06.023

    20. [20]

      Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet. Chem. 2004, 689, 3641.  doi: 10.1016/j.jorganchem.2004.06.008

    21. [21]

      Belov, G. P. Catal. Ind. 2014, 6, 266.  doi: 10.1134/S2070050414040047

    22. [22]

      Leeuwen, P. W. N. M. V.; Clément, N. D.; Tschan, J. L. Coord. Chem. Rev. 2011, 255, 1499.  doi: 10.1016/j.ccr.2010.10.009

    23. [23]

      Wang, T.; Gao, X.; Shi, P.; Pei, H.; Jiang, T. Appl. Petro. Res. 2015, 5, 143.  doi: 10.1007/s13203-015-0103-4

    24. [24]

      Sydora, O. L.; Jones, T. C.; Small, B. L.; Nett, A. J.; Fischer, A. A.; Carney, M. J. ACS Catal. 2012, 2, 2452.  doi: 10.1021/cs300488t

    25. [25]

      Radcliffe, J. E.; Batsanov, A. S.; Smith, D. M.; Scott, J. A.; Dyer, P. W.; Hanton, M. J. ACS Catal. 2015, 115, 7095.

    26. [26]

      Liu, R.; Xiao, S. M.; Zhong, X. H.; Cao, Y. C.; Liang, S. B.; Liu, Z. Y.; Ye, X. F.; Shen, A.; Zhu, H. P. Chin. J. Org. Chem. 2015, 35, 1861 (in Chinese).
       

    27. [27]

      Wang, J.; Huo, H. L.; Ma, L. L.; Li, C. Q.; Shi, W. G. Chem. Bull. 2016, 79, 31 (in Chinese).
       

    28. [28]

      Kuhlmann, S.; Dixon, J. T.; Haumann, M.; Morgan, D. H.; Ofili, J.; Spuhl, O.; Taccardi, N.; Wasserscheid, P. Adv. Synth. Catal. 2006, 348, 1200.  doi: 10.1002/(ISSN)1615-4169

    29. [29]

      Wang, Y. Y.; Wang, H. H.; Chuang, T. L.; Chen, B. H.; Lee, D. J. Energy Procedia. 2014, 61, 933.  doi: 10.1016/j.egypro.2014.11.998

    30. [30]

      Overett, M. J.; Blann, L. K.; Bollmann, A.; Dixon, J. T.; Haasbroek, D.; Killian, E.; Maumela, H.; Mcguinness, D. S.; Morgan, D. H. J. Am. Chem. Soc. 2005, 127, 10723.  doi: 10.1021/ja052327b

    31. [31]

      Shao, H. Q.; Li, Y. F.; Gao, X. L.; Cao, C. G.; Tao, Y. Q.; Lin, J. C.; Jiang, T. J. Mol. Catal. A: Chem. 2014, 390, 152.  doi: 10.1016/j.molcata.2014.03.020

    32. [32]

      Shao, H. Q.; Zhou, H.; Guo, X. Y.; Tao, Y. Q.; Jiang, T.; Qin, M. G. Catal. Commun. 2015, 60, 14.  doi: 10.1016/j.catcom.2014.11.010

    33. [33]

      Peulecke, N.; Muller, B. H.; Spannenberg, A.; Hohne, M.; Rosenthal, U.; Wohl, A.; Muller, W.; Alqahtani. A.; Alhazmi, M. Dalton Trans. 2016, 45, 8869.  doi: 10.1039/C6DT01109H

    34. [34]

      Wohl, A.; Muller, W.; Peulecke, N.; Muller, B. H.; Peitz, S.; Heller, D.; Rosenthal, U. J. Mol. Catal. A: Chem. 2009, 297, 1.  doi: 10.1016/j.molcata.2008.09.026

    35. [35]

      Song, C.; Mao, G. L.; Liu, Z. H.; Ning, Y. N.; Jiang, T. Chin. J. Org. Chem. 2016, 36, 2105 (in Chinese).
       

    36. [36]

      Wang, S. H.; Li, J. Z.; Wang, G. Z.; Zhang, B. J.; Qu, J. B. Polym. Bull. 2012, 4, 122.

    37. [37]

      Mogorosi, M. M.; Mahamo, T.; Moss, J. R.; Mapolie, S. F.; Slootweg, J. C.; Lammertsma, K.; Smith, G. S. J. Organomet. Chem. 2011, 696, 3585.  doi: 10.1016/j.jorganchem.2011.07.042

    38. [38]

      Tang, X. B.; Zhang, D. H.; Jie, S. Y.; Sun, W. H.; Chen, J. T. J. Organomet. Chem. 2005, 690, 3918.  doi: 10.1016/j.jorganchem.2005.05.026

    39. [39]

      Jabri, A.; Temple, C.; Crewdson, P.; Gambarotta, S.; Korobkov, L.; Duchateau, R. J. Am. Chem. Soc. 2006, 128, 9238.  doi: 10.1021/ja0623717

    40. [40]

      McGuinness, D. S.; Rucklidge, A. J.; Tooze, R. P.; Slawin, A. M. Z. Organometallics 2007, 26, 2561.  doi: 10.1021/om070029c

    41. [41]

      Walsh, R.; Morgan, D. H.; Bollmann, A.; Dixon J. T. Appl. Catal. A: Gen. 2006, 306, 184.  doi: 10.1016/j.apcata.2006.03.055

    42. [42]

      Chen, J. X.; Huang, Y. B.; Li, Z. S.; Zhang, Z. C.; Wei, C. X.; Lan, T. Y.; Zhang, W. J. J. Mol. Catal. A: Chem. 2006, 259, 133.  doi: 10.1016/j.molcata.2006.06.016

    43. [43]

      Sun, W. H.; Song, S. J.; Li, B. X.; Redshaw, C.; Hao, X.; Li, Y. S.; Wang, F. S. Dalton Trans. 2012, 41, 11999.  doi: 10.1039/c2dt30989k

    44. [44]

      Ning, Y. N.; Niu, B.; Jiang, T.; Ding, W. Y.; Yin, X. F. Chem. Prod. Technol. 2009, 16, 19 (in Chinese).  doi: 10.3969/j.issn.1006-6829.2009.06.006

    45. [45]

      Ning, Y. N.; Xue, Q. M.; Mao, G. L.; Jiang, T. Chem. Prog. 2011, 30, 1003 (in Chinese).
       

    46. [46]

      Sa, S.; Lee, S. M.; Sang, Y. K. J. Mol. Catal. A Chem. 2013, 378, 17.  doi: 10.1016/j.molcata.2013.05.015

    47. [47]

      Mao, G. L.; Ning, Y. N.; Hu, W. B.; Li, S. M.; Song, X. F.; Niu, B.; Jiang, T. Chin. Sci. Bull. 2008, 53, 3511.
       

    48. [48]

      Wang, Q. A.; Fan, H. F.; Liao, T. G. Technical Handbook of Organic Chemistry Laboratory, Chemical Industry Press, Beijing, 2012, pp. 201~205 (in Chinese).

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(6)
  • Abstract views(1353)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return