Citation: Luo Dayun, Hu Xingmei, Zi Quanxing, Lin Jun, Yan Shengjiao. Green Synthesis of Indanone Fused Pyrrole Compounds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3204-3212. doi: 10.6023/cjoc201706002 shu

Green Synthesis of Indanone Fused Pyrrole Compounds

  • Corresponding author: Lin Jun, linjun@ynu.edu.cn Yan Shengjiao, yansj@ynu.edu.cn
  • Received Date: 1 June 2017
    Revised Date: 5 July 2017
    Available Online: 18 December 2017

    Fund Project: the National Natural Science Foundation of China 21262042the Natural Science Foundation of Yunnan Province 2017FA003the Talent Found in Yunnan Province 2012HB001the National Natural Science Foundation of China U1202221the National Natural Science Foundation of China 21362042the National Natural Science Foundation of China 21662042Project supported by the National Natural Science Foundation of China (Nos. 21362042, 21662042, U1202221, 21262042), the Natural Science Foundation of Yunnan Province (No. 2017FA003), the Talent Found in Yunnan Province (No. 2012HB001), the Donglu Scholar of Yunnan University and the Excellent Young Talents in Yunnan University

Figures(3)

  • green synthetic method was constructed for the synthesis of indanone fused pyrrolone compounds, which based on the catalyst-free reaction of N-alkyl-1-methylthio-2-nitroethenamine (1) with ninhydrin hydrate (2) in ethanol at reflux. As a result, a series of indanone fused pyrrolones have been synthesized with 91%~98% yields by this one-step reaction. This protocol possesses some advantages including readily available starting materials, simple operation and concise synthetic route and so on.
  • 加载中
    1. [1]

      Jones, R. A. Pyrroles, the Synthesis, Reactivity, and Physical Properties of Substituted Pyrroles, Part II, Wiley, NewYork, 1992,

    2. [2]

      Fan, H.; Peng, J. N.; Hamann, M. T.; Hu, J. F. Chem. Rev. 2008, 103, 264.
       

    3. [3]

      Andersen, R. J.; Faulkner, D. J.; He, C. H.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1985, 107, 5492.  doi: 10.1021/ja00305a027

    4. [4]

      Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. Chem. Rev. 2008, 108, 264.  doi: 10.1021/cr078199m

    5. [5]

      (a) Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.; Albericio, F.; Á lvarez, M. J. Med. Chem. 2006, 49, 3257.
      (b) Banwell, M. G.; Hamel, E.; Hockless, D. C. R.; Verdier-Pinard, P.; Willis, A. C.; Wong, D. J. Bioorg. Med. Chem. 2006, 14, 4627.

    6. [6]

      Yoshida, W. Y.; Lee, K. K.; Carroll, A. R.; Scheuer, P. J. Helv. Chim. Acta 1992, 75, 1721.  doi: 10.1002/(ISSN)1522-2675

    7. [7]

      Kang, H.; Fenical, W. J. Org. Chem. 1997, 62, 3254.  doi: 10.1021/jo962132+

    8. [8]

      Paudler, W. W.; Kerley, G. I.; McKay, J. J. Org. Chem. 1963, 28, 2194.  doi: 10.1021/jo01044a010

    9. [9]

      Powell, R. G.; Smith, C. R. Tetrahedron Lett. 1969, 46, 4081.

    10. [10]

      Powell, R. G.; Weislede, D.; Smith, C. R. J. Pharm. Sci. 1972, 61, 1227.  doi: 10.1002/jps.2600610812

    11. [11]

      (a) Takano, I.; Yasuda, I.; Nishijima, M. Phytochemistry 1996, 44, 735.
      (b) Morita, H.; Arisaka, M.; Yoshida, N. Cephalezomines A.-F. Tetrahedron 2000, 56, 2929.
      (c) Morita, H.; Yoshinaga, M.; Kobayashi, J. Tetrahedron 2002, 33, 5489.

    12. [12]

      (a) Wang, L.; Cherian, C.; Desmoulin, S. K.; Mitchell-Ryan, S.; Hou, Z.-J.; Matherly, L. H.; Gangjee, A. J. Med. Chem. 2012, 55, 1758.
      (b) Gangjee, A.; Jain, H. D.; Queener, S. F.; Kisliuk, R. L. J. Med. Chem. 2008, 51, 4589.
      (c) Deng, Y.-J.; Wang, Y.-Q.; Cherian, C.; Hou, Z.-J.; Buck, S. A.; Matherly, L. H.; Gangjee, A. J. Med. Chem. 2008, 51, 5052.
      (d) Wang, L.; Desmoulin, S.; Cherian, K. C.; Polin, L.; White, K.; Kushner, J.; Fulterer, A.; Chang, M.-H.; Mitchell-Ryan, S. M.; Romero, M. F.; Hou, Z.-J.; Matherly, L. H.; Gangjee, A. J. Med. Chem. 2011, 54, 7150.

    13. [13]

      Regueiro-Ren, A.; Xue, Q.-M.; Swidorski, J. J.; Gong, Y.-F.; Mathew, M.; Parker, D. D.; Yang, Z.; Eggers, B.; D'Arienzo, C.; Sun, Y.-N.; Malinowski, J.; Gao, Q.; Wu, D.-D.; Langley, D. R.; Colonno, R. J.; Chien, C.; Grasela, D. M.; Zheng, M.; Lin, P.-F.; Meanwell, N. A.; Kadow, J. F. J. Med. Chem. 2013, 56, 1656.  doi: 10.1021/jm3016377

    14. [14]

      Varaprasad, C. V. N. S.; Ramasamy, K. S.; Girardet, J.-L.; Gunic, E.; Lai, V.; Zhong, Z.; An, H.; Hong, Z. Bioorg. Chem. 2007, 35, 25.  doi: 10.1016/j.bioorg.2006.07.003

    15. [15]

      (a) Pudio, J. S.; Saxena, N. K.; Nassiri, M. R.; Turk, S. R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1988, 31, 2086.
      (b) Saxena, N. K.; Hagenow, B. M.; Genzlinger, G.; Turk, S. R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1988, 31, 1501.

    16. [16]

      E1-Gaby, M. S. A. A.; Gaber, M.; Atalla, A. A.; Abd Al-Wahab, K. A. Farmaco 2002, 57, 613.  doi: 10.1016/S0014-827X(01)01178-8

    17. [17]

      Trzoss, M.; Bensen, D. C.; Lia, X.-M.; Chen, Z.-Y.; Lam, T.; Zhang, J.-Z.; Creighton, C. J.; Cunningham, M. L.; Kwan, B.; Stidham, M.; Nelson, K.; Brown-Driver, V.; Castellano, A.; Shaw, K. J.; Lightstone, F. C.; Wong, S.-E.; Nguyen, T. B.; Finn, J.; Tari, L. W. Bioorg. Med. Chem. Lett. 2013, 23, 1537.  doi: 10.1016/j.bmcl.2012.11.073

    18. [18]

      (a) Estévez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev. 2010, 39, 4402.
      (b) Preller, M.; Chinthalapudi, K.; Martin, R.; Knö lker, H.-J.; Manstrin, D. J. J. Med. Chem. 2011, 54, 3675.

    19. [19]

      Chen, Z.-C.; Venkatesan, A. M.; Dehnhardt, C. M.; Ayral-Kaloustian, S.; Brooijmans, N.; Mallon, R.; Feldberg, L.; Hollander, I.; Lucas, J.; Yu, K.; Kong, F.-M.; Mansour, T. S. J. Med. Chem. 2010, 53, 3169.  doi: 10.1021/jm901783v

    20. [20]

      Weinberg, L. R.; Albom, M. S.; Angeles, T. S.; Breslin, H. J.; Gingrich, D. E.; Huang, Z.-Q.; Lisko, J. G.; Mason, J. L.; Milkiewicz, K. L.; Thieu, T. V.; Underiner, T. L.; Wells, G. J.; Wells-Knecht, K. J.; Dorsey, B. D. Bioorg. Med. Chem. Lett. 2011, 21, 7325.  doi: 10.1016/j.bmcl.2011.10.032

    21. [21]

      Lindsay, K. B.; Pyne, S. G. Tetrahedron 2004, 60, 4173.  doi: 10.1016/j.tet.2004.03.050

    22. [22]

      (a) Liu, Y.; Fang, J.-P.; Cai, H.-Y.; Xiao, F.; Ding, K.; Hua, Y.-H.; Bioorg. Med. Chem. 2012, 20, 5473.
      (b) Palmer, A. M.; Münch, G.; Brehm, C.; Zimmermann, P. J.; Buhr, W.; Feth, M. P.; Simon, W. A. Bioorg. Med. Chem. 2008, 16, 1511.

    23. [23]

      (a) Fan, Y.; Liu, S.; Chen, N.; Shao, X.; Xu, X.; Li, Z. Synlett 2015, 26, 393.
      (b) Chen, X.-B.; Wang, X.-Y.; Zhu, D.-D.; Yan, S.-J.; Lin, J. Tetrahedron 2014, 70, 1047.
      (c) Chen, X.-B.; Yan, S.-J.; Su, A.; Liu, W.; Lin, J. Tetrahedron 2015, 71, 4745.
      (d) Hu, L.; Wang, K.-M.; Zhao, M.; Lin, X.-R.; Zju, H.-Y.; Yan, S.-J.; Lin, J. Tetrahedron 2014, 70, 4478.
      (e) Chen, X.-B.; Liu, Z.-C.; Yang, L.-F.; Yan, S.-J.; Lin, J. ACS Sustainable Chem. Eng. 2014, 2, 1155.
      (f) Chen, X.-B.; Liu, Z.-C.; Lin, X.-R.; Huang, R.; Yan, S.-J.; Lin, J. ACS Sustainable Chem. Eng. 2014, 2, 2391.
      (g) Wang, K.-M.; Yan, S.-J.; Lin, J. Eur. J. Org. Chem. 2014, 1129.

    24. [24]

    25. [25]

    26. [26]

      (a) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett. 2008, 10, 1783.
      (b) Duarte, C. D.; Barreiro, E. J.; Fraga, C. A. Mini-Rev. Med. Chem. 2007, 7, 1108.
      (c) Huang, L.; Lu, C.; Sun, Y.; Mao, F.; Luo, Z.; Su, T.; Jiang, H.; Shan, W.; Li, X. J. Med. Chem. 2012, 55, 8483.
      (d) Guillon, J.; Dallemagne, P.; Leger, J.-M.; Sopkova, J.; Bovy, P. R.; Jarry, C.; Rault, S. Bioorg. Med. Chem. 2002, 10, 1043.
      (e) Yu, F.-C.; Yan, S.-J.; Hu, L.; Wang, Y.-C.; Lin, J. Org. Lett. 2011, 13, 4782.
      (f) Xu, H.; Zhou, B.; Zhou, P.; Zhou, J.; Shen, Y.; Yu, F.-C.; Lu, L.-L. Chem. Commun. 2016, 52, 8002.
      (g) Xu, H.; Zhou, P.; Zhou, B.; Zhou, J.; Shen, Lu, L.-L. RSC Adv. 2016, 6, 73760.

    27. [27]

      Patel, A.; Giles, D.; Basavarajaswamy, G.; Sreedhar, C.; Patel, A. Med. Chem. Res. 2012, 21, 4403.  doi: 10.1007/s00044-012-9973-5

    28. [28]

      Mohil, R.; Kumar, D.; Mor, S. J. Heterocycl. Chem. 2014, 51, 203.  doi: 10.1002/jhet.1081

    29. [29]

      (a) Insuasty, B.; Orozco, F.; Lizarazo, C.; Quiroga, J. Bioorg. Med. Chem. 2008, 16, 8492.
      (b) Saxena, H. O.; Faridi, U.; Srivastava, S.; Kumar, J. K.; Darokar, M. P.; Luqman, S.; Chanotiya, C. S.; Krishna, V.; Negi, A. S.; Khanuja, S. P. S. Bioorg. Med. Chem. Lett. 2008, 18, 3914.
      (c) Lobo, G.; Monasterios, M.; Rodrigues, J.; Gamboa, N.; Capparelli, M. V.; Martínezcuevas, J.; Lein, M.; Jung, K.; Abramjuk, C.; Charris, J. Eur. J. Med. Chem. 2015, 96, 281.

    30. [30]

      Finkielsztein, L. M.; Castro, E. F.; Fabián, L. E.; Moltrasio, G. Y.; Campos, R. H.; Cavallaro, L. V.; Moglioni, A. G. Eur. J. Med. Chem. 2008, 43, 1767.  doi: 10.1016/j.ejmech.2007.10.023

    31. [31]

      Chen, N.; Meng, X.; Zhu, F.; Cheng, J.; Shao, X.; Li, Z. J. Agric. Food Chem. 2015, 63, 1360.  doi: 10.1021/jf505281p

    32. [32]

    33. [33]

      Jabor, G. G.; Bouaziz, Z.; Winter, E.; Daflonyunes, N.; Aichele, D.; Nacereddine, A.; Marminon, C.; Valdameri, G.; Zeinyeh, W.; Bollacke, A.; Guillon, J.; Lacoudre, A.; Pinaud, N.; Cadena, S. M.; Jose, J.; Borgne, M. L.; Pietro, A. D. J. Med. Chem. 2015, 58, 265.  doi: 10.1021/jm500943z

    34. [34]

      Nugiel, D. A.; Vidwans, A.; Etzkorn, A. M.; Rossi, K. A.; Benfield, P. A.; Burton, C. R.; Cox, S.; Doleniak, D.; Seitz, S. P. J. Med. Chem. 2002, 45, 5224.  doi: 10.1021/jm020171+

    35. [35]

      Usui, T.; Ban, H. S.; Kawada, J.; Hirokawa, T.; Nakamura, H. Bioorg. Med. Chem. Lett. 2008, 18, 285.  doi: 10.1016/j.bmcl.2007.10.084

    36. [36]

      (a) Dhareshwar, S. S.; Stella, V. J. J. Pharm. Sci. 2010, 99, 2711.
      (b) Usta, H.; Facchetti, A.; Marks, J. T. Org. Lett. 2008, 10, 1385.
      (c) Shultz, D. A.; Sloop, J. C.; Washington, G. J. Org Chem. 2006, 71, 9104.

    37. [37]

      (a) Suchand, B.; Satyanarayana, G. J. Org. Chem. 2017, 82, 372.
      (b) Zhao, P.; Liu, Y.; Xi, C. Org. Lett. 2015, 17, 4388.
      (c) Domaradzki, M. E.; Long, Y.; She, Z.; Liu, X.; Zhang, G.; Chen, Y. J. Org. Chem. 2015, 80, 11360.
      (d) Kashanna, J.; Nagaraju, K.; Kumara Swamy, K. C. Tetrahedron Lett. 2016, 57, 1576.
      (e) Zhao, P.; Liu, Y.; Xi, C. Org. Lett. 2015, 17, 4388.
      (f) Pan, C.; Huang, B.; Hu, W.; Feng, X.; Yu, J.-T. J. Org. Chem. 2016, 81, 2087.

    38. [38]

      (a) Estévez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev. 2014, 43, 4633.
      (b) Estévez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev. 2010, 39, 4402.
      (c) Vessally, E. RSC Adv. 2016, 6, 18619.
      (d) Torres, G. M.; Quesnel, J. S.; Bijou, D.; Arndtsen, B. A. J. Am. Chem. Soc. 2016, 138, 7315.
      (e) Chen, N.; Zou, M.; Tian, X.; Zhu, F.; Jiang, D.; Cheng, J. Eur. J. Org. Chem. 2014, 2014, 6210.
      (f) Liu, X. M.; Lin, X. R.; Yan, S. J.; Peng, M. Y.; Huang, R.; Lin, J. Tetrahedron 2016, 72, 5314.

    39. [39]

      (a) Schertz, T. D; Reiter, R. C.; Stevenson, C. D. J. Org. Chem. 2001, 66, 7596.
      (b) Soro, Y.; Bamba, F.; Siaka, S.; Coustard, J. M. ChemInform 2016, 37, 3315.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    5. [5]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    10. [10]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    19. [19]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(9)
  • Abstract views(1061)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return