Citation: Wang Yufeng, Yang Yajie, Huang Ling, Jie Kun, Guo Shengmei, Cai Hua. Iodine Catalyzed Kabachnik-Fields Reaction of Trialkyl Phosphites: Facile Access to Benzoxazine Containing Phosphorus[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3220-3228. doi: 10.6023/cjoc201705023 shu

Iodine Catalyzed Kabachnik-Fields Reaction of Trialkyl Phosphites: Facile Access to Benzoxazine Containing Phosphorus

  • Corresponding author: Wang Yufeng, smguo@ncu.edu.cn Yang Yajie,  Guo Shengmei,  Cai Hua, caihu@ncu.edu.cn
  • Received Date: 16 May 2017
    Revised Date: 13 July 2017
    Available Online: 16 December 2017

    Fund Project: the National Program on Key Basic Research Project 973 Program, No. 2012CBA01204the Natural Science Foundation of Jiangxi Province 20151BAB213007the National Natural Science Foundation of China 21302084Project supported by the National Program on Key Basic Research Project (973 Program, No. 2012CBA01204), the National Natural Science Foundation of China (No. 21302084) and the Natural Science Foundation of Jiangxi Province (No. 20151BAB213007)

Figures(3)

  • Iodine-catalyzed Kabachnik-Fields reaction with trialkyl phosphites for the synthesis of α-amino phosphates was developed. This transformation completes rapidly at 40℃, and is well tolerated with a range of amines and phosphites. Moreover, the products afforded by salicyl aldehydes with trialkyl phosphites could efficiently convert to benzoxazines containing phosphate under mild conditions, which provide a new precursor of new phenolic resin
  • 加载中
    1. [1]

      (a) Schmidt, R. R. Synthesis 1972, 7, 333.
      (b) Burke, W. J. J. Am. Chem. Soc. 1949, 71, 609.
      (c) Mueller, R.; Li, Y. X.; Hampson, A.; Zhong, S.; Harris, C.; Marrs, C.; Rachwal, R.; Ulas, J.; Nielsson, L.; Rogers, G. Bioorg. Med. Chem. Lett. 2011, 21, 3923.
      (d) Dutta, A. K.; Gogoi, P.; Saikia, M.; Borah, P. R. Catal. Lett. 2016, 146, 902.

    2. [2]

      (a) Bouaziz, Z.; Riondel, J.; Mey, A.; Berlion, M.; Villard, J.; Fillion, H. Eur. J. Med. Chem. 1991, 26, 469.
      (b) Chylinska, J. B.; Urbanski, T.; Mordarski, M. J. Med. Chem. 1963, 6, 484.
      (c) Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M. H.; Boitard, M.; Fillion, H. Chem. Pharm. Bull. 1996, 44, 605.
      (d) Mathew, B. P.; Kumar, A.; Sharma, S.; Shula, P. K.; Nath, M. Eur. J. Med. Chem. 2010, 45, 1502.
      (e) Petrlkov, E.; Waisser, K.; DiviSova, H.; Husakov, P.; Vrabcova, P.; Kunes, J.; Kolr, K.; Stolarikov, J. Bioorg. Med. Chem. 2010, 18, 8178.
      (f) Waghmode, N. A.; Kalbandhe, A. H.; Thorat, P. B.; Karade, N. N. Tetrahedron Lett. 2016, 57, 680.

    3. [3]

      (a) Froimowicz, P.; Zhang, K.; Ishida, H. Chem.-Eur. J. 2016, 22, 2691.
      (b) Liu, Y.-X.; Ma, H.-M.; Liu, Y.; Qiu, J.-J.; Liu, C.-M. Polymer 2016, 82, 32.
      (c) Huang, C. C.; Lin, C. S.; Dai, S. A. RSC Adv. 2015, 5, 74874.
      (d) Zhang, Q.; Yang, P.; Deng, Y.; Zhang, C.; Zhu, R.; Gu, Y. RSC Adv. 2015, 5, 103203.
      (e) Gupta, K. S. V.; Ramana, D. V.; Vinayak, B.; Sridhar, B.; Chandrasekharam, M. New J. Chem. 2016, 40, 6389.
      (f) Barta, P.; Szatmári, I.; Fülö p, F.; Heydenreich, M.; Koch, A.; Kleinpeter, E. Tetrahedron 2016, 72, 2402.
      (g) Dumas, L.; Bonaud, L.; Olivier, M.; Poorteman, M.; Dubois, P. Eur. Polym. J. 2016, 75, 486.
      (h) Wipt, P.; Hayes, G. B. Tetrahedron 1998, 54, 6987.

    4. [4]

      (a) Su, H.; Liu, Z. J. Therm. Anal. Calorim 2013, 114, 1207.
      (b) Lin, C. H.; Lin, H. T.; Sie, J. W.; Hwang, K. Y.; Tu, A. P. J. Polym. Sci.: Part A: Polym. Chem. 2010, 4555.

    5. [5]

      (a) Kabachnik, M. I. Dokl. Akad. Nauk SSSR 1952, 83, 689.
      (b) Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528

    6. [6]

      (a) Wu, J.; Sun, W.; Wang, W.-Z.; Xia, H.-G. Chin. J. Chem. 2006, 24, 1054.
      (b) Reddy, B. V. S.; Krishna, A. S.; Ganesh, A. V.; Kumar, J. J. S. N.Tetrahedron Lett. 2011, 52, 1369.

    7. [7]

      Wu, J.; Sun, W.; Xia, H.-G.; Sun, X. Org. Biomol. Chem. 2006, 4, 1663.  doi: 10.1039/B602536F

    8. [8]

      Jafari, A. A.; Nazarpour, M.; Abdollahi-Alibeik, M. Heteroat. Chem. 2010, 21, 397.  doi: 10.1002/hc.20635

    9. [9]

      Bhattacharya, T.; Majumdar, B.; Dey, D.; Sarma, T. K. RSC Adv. 2014, 4, 45831.  doi: 10.1039/C4RA08533G

    10. [10]

      Wu, J.; Sun, W.; Sun, X.; Xia, H.-G. Green Chem. 2006, 8, 365.  doi: 10.1039/b517488k

    11. [11]

      (a) Ambica; Kumar, S.; Taneja, S. C.; Hundal, M. S.; Kapoor, K. K. Tetrahedron Lett. 2008, 49, 2208.
      (b) Li, X.-C.; Gong, S.-S.; Zeng, D.-Y.; You, Y.-H.; Sun, Q. Tetrahedron Lett. 2016, 57, 1782.
      (c) Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669.
      (d) Qian, C.; Huang, T. J. Org. Chem. 1998, 63, 4125.
      (e) Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.

    12. [12]

      (a) Tillu, V. H.; Dumbre, D. K.; Wakharkar, R. D.; Choudhary, V. R. Tetrahedron Lett. 2011, 52, 863.
      (b) Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211.

    13. [13]

      (a) Mu, X.-J.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2006, 47, 1125.
      (b) Bhattacharya, A. K.; Rana, K. C. Tetrahedron Lett. 2008, 49, 1782.

    14. [14]

      (a) Ouahrouch, A.; Taourirte, M.; Schols, D.; Snoeck, R.; Andrei, G.; Angel, J. W.; Lazrek, H. B. Arch. Phram. Chem. Life Sci. 2016, 349, 30.
      (b) Ouahrouch, A.; Krim, J.; Taourirte, M.; Lazrek, H. B.; Engels, J. W.; Bats, J. W. Acta Crystallogr. 2013, C69, 1157.

    15. [15]

      (a) Thirumurugan, P.; Nandakumar, A.; SudhaPriya, N.; Muralidaran, D.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 15708.
      (b) Yadava, J. S.; Reddy, B. V. S.; Sreedhar, P. Green Chem. 2002, 4, 436.
      (c) Disale, S. T.; Kale, S. R.; Kahandal, S. S.; Srinivasan, T. J.; Jayaram, R. V. Tetrahedron Lett. 2012, 53, 2277.
      (d) Ordóñ nez, M.; Sayago, F. J.; Cativiela, C. Tetrahedron 2012, 68, 6369.

    16. [16]

      (a) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2008, 73, 6029.
      (b) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72, 1263.

    17. [17]

      Yu, Y.-Q.; Xu, D.-Z. Synthesis 2015, 47, 1869.  doi: 10.1055/s-00000084

    18. [18]

      Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001, 1698.
       

    19. [19]

      Dar, B.; Singh, A.; Sahu, A.; Patida, P.; Chakraborty, A.; Sharma, M.; Singh, B. Tetrahedron Lett. 2012, 53, 5497.  doi: 10.1016/j.tetlet.2012.07.123

    20. [20]

      Kudrimoti, S.; Bommena, V. R. Tetrahedron Lett. 2005, 46, 1209  doi: 10.1016/j.tetlet.2004.12.070

    21. [21]

      (a) Huang, L.; Gong, J.; Zhu, Z.; Wang, Y.; Guo, S.; Cai, H. Org. Lett. 2017, 29, 2242.
      (b) Huang, L.; Zhu, Z.; Cao, T.; Lei, X.; Gong, J.; Guo, S.; Cai, H. Chin. J. Org. Chem. 2017, 37, 1571 (in Chinese).
      (c) Gong, J.; Zhu, Z.; Lu, L.; Guo, S.; Cai, H. Chin. J. Org. Chem. 2015, 35, 1917 (in Chinese).
      (d) Gong, J.; Huang, L.; Deng, Q.; Jie, K.; Wang, Y.; Guo, S.; Cai, H. Org. Chem. Front. 2017, 4, DOI: 10. 1039/C7QO00318H.

    22. [22]

      Cambridge Crystallographic Data Centre (CCDC) for 4o (1509069) and 5q (1509068).

    23. [23]

      (a) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2016, 81, 3321.
      (b) Ji, S.-J.; Wang, S.-Y.; Zhang Y.; Loh, T.-P. Tetrahedron 2004, 60, 2051.
      (c) Zhang, H.; Wei, Q.; Zhu, G.; Qu, J.; Wang, B. Tetrahedron Lett. 2016, 57, 2633.

    24. [24]

      Zhang, Y.; Zhu, C. Catal. Commun. 2011, 28, 134.
       

    25. [25]

      Li, N.; Qiu, R.; Xu, X.; Chen, J.; Zhang, X.; Chen, S.; Yin, S. Catal. Commun. 2014, 43, 184.  doi: 10.1016/j.catcom.2013.10.013

    26. [26]

      Thirmurugan, P.; Nandakumar, A.; Sudha, N.; Muralidaran, D.; Perumal, P. Tetrahedron. Lett. 2010, 51, 5708  doi: 10.1016/j.tetlet.2010.08.066

    27. [27]

      Song, L.; Yang, C.; Yu, Y.; Xu, D. Synthesis 2017, 49, 1641.

    28. [28]

      Das, B.; Satyalakshmi, G.; Suneel, K.; Damodar, K. J. Org. Chem. 2009, 74, 8400.  doi: 10.1021/jo901765s

    29. [29]

      Shinde, p.; Kategaonkar, A.; Shingate, B.; Shingare, M. Tetrahedron Lett. 2011, 52, 2889. (Li, L.; Fan, Y.)  doi: 10.1016/j.tetlet.2011.03.138

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    3. [3]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    9. [9]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Siting CaiXiang ChenShuli WangXinqin LiaoZhong ChenYue Lin . Silica coating of quantum dots and their applications in optoelectronic fields. Chinese Chemical Letters, 2025, 36(6): 110798-. doi: 10.1016/j.cclet.2024.110798

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(11)
  • Abstract views(2031)
  • HTML views(441)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return