Citation: Li Lingjie, Zhang Jing, Tang Yu, Xu Kaitian, Zhang Yuanming. Catalyst-Free One-Pot Synthesis of 4-Substituted Quinazolines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2711-2716. doi: 10.6023/cjoc201705021 shu

Catalyst-Free One-Pot Synthesis of 4-Substituted Quinazolines

  • Corresponding author: Tang Yu, tytang@jnu.edu.cn Zhang Yuanming, tzhangym@jnu.edu.cn
  • Received Date: 15 May 2017
    Revised Date: 5 June 2017
    Available Online: 16 October 2017

    Fund Project: the National Natural Science Foundation of China 21274083Project supported by the National Natural Science Foundation of China (No. 21274083)

Figures(2)

  • A novel and catalyst-free one-pot method for the preparation of quinazoline compounds has been reported. Of the prepared 15 quinazoline compounds, three are new compounds. Their yields are among 37%~95%. The effects of electron effect and steric hindrance on the reaction were discussed. A plausible novel mechanism concerning repeating nucleophilic addition and elimination to give quinazoline has been proposed. By this mechanism, the reaction could be applied to acid anhydride instead of N, N-dimethylformamide (DMF).
  • 加载中
    1. [1]

      (a) Wattanapiromsakul, C.; Forster, P. I.; Waterman, P. G. Phytochemistry 2003, 64, 609.
      (b) Foster, B. A.; Coffey, H. A.; Morin, M. J.; Rastinejad, F. Science 1999, 286, 2507.
      (c) Doyle, L. A.; Ross, D. D. Oncogene 2003, 22, 7340.
      (d) Deng, Y.; Xu, R.; Ye, Y. Pharm. Sci. 2000, 9, 116.

    2. [2]

      (a) El-Azab, A. S.; Al-Omar, M. A.; Alaa, A.-M.; Abdel-Aziz, N. I.; Magda, A.-A.; Aleisa, A. M.; Sayed-Ahmed, M. M.; Abdel-Hamide, S. G. Eur. J. Med. Chem. 2010, 45, 4188.
      (b) Henderson, E. A.; Bavetsias, V.; Theti, D. S.; Wilson, S. C.; Clauss, R.; Jackman, A. L. Bioorg. Med. Chem. 2006, 14, 5020.
      (c) Noolvi, M. N.; Patel, H. M.; Bhardwaj, V.; Chauhan, A. Eur. J. Med. Chem. 2011, 46, 2327.
      (d) Hou, X.; Zhang, J.; Zhao, X.; Chang, L.; Hu, P.; Liu. H. Chin. J. Chem. 2014, 32, 538.

    3. [3]

      (a) Chien, T. C.; Chen, C. S.; Yu, F. H.; Chern, J. W. Chem. Pharm. Bull. 2004, 52, 1422.
      (b) Waisser, K.; Gregor, J.; Dostál, H.; Kuneš, J.; Kubicová, L.; Klimešová, V.; Kaustová, J. Farmaco 2001, 56, 803.
      (c) Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.; Stamminger, T.; Marschall, M. Antimicrob. Agents Ch emother. 2004, 48, 4154.

    4. [4]

      (a) Kuneš, J.; Bažant, J.; Pour, M.; Waisser, K.; Šlosárek, M.; Janota, J. Farmaco 2000, 55, 725.
      (b) Kumar, A.; Sharma, P.; Kumari, P.; Kalal, B. L. Bioorg. Med. Chem. Lett. 2011, 21, 4353.
      (c) Balakumar, C.; Lamba, P.; Kishore, D. P.; Narayana, B. L.; Rao, K. V.; Rajwinder, K.; Rao, A. R.; Shireesha, B.; Narsaiah, B. Eur. J. Med. Chem. 2010, 45, 4904.
      (d) Alafeefy, A. M.; Kadi, A. A.; Al-Deeb, O. A.; El-Tahir, K. E.; Al-jaber, N. A. Eur. J. Med. Chem. 2010, 45, 4947.

    5. [5]

    6. [6]

      (a) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1998, 3, 615.
      (b) Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153.

    7. [7]

      (a) Panja, S. K.; Dwivedi, N.; Saha, S. Tetrahedron Lett. 2012, 53, 6167.
      (b) Yan, Y.; Xu, Y.; Niu, B.; Xie, H.; Liu, Y. J. Org. Chem. 2015, 80, 5581.
      (c) Bandaru, M.; Sabbavarapu, N. M.; Pavan, A. K.; Akula, A. K.; Durga, N. Y. V. Eur. J. Chem. 2012, 3, 252.

    8. [8]

      (a) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818.
      (b) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Commun. 2010, 46, 5244.
      (c) Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.

    9. [9]

      Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun. 2008, 44, 6333.
       

    10. [10]

      Malakar, C. C.; Baskakova, A.; Conrad, J.; Beifuss, U. Chem.-Eur. J. 2012, 18, 8882.  doi: 10.1002/chem.v18.29

    11. [11]

      Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513.  doi: 10.1039/c1cc12885j

    12. [12]

      Duan, T.; Zhai, T.; Liu, H.; Yan, Z.; Zhao, Y.; Feng, L.; Ma, C. Org. Biomol. Chem. 2016, 14, 6561.  doi: 10.1039/C6OB00625F

    13. [13]

      Wen, Y.-M.; Chen, G.-F.; Tang, Y.; Chen. J.; Yang J.; Zhang, Y.-M. Chin. J. Org. Chem. 2015, 35, 2545.
       

    14. [14]

      Maitraie, D.; Yakaiah, T.; Srinivas, K.; Reddy, G. V.; Ravikanth, S.; Narsaiah, B.; Rao, P. S.; Ravikumar, K.; Sridhar, B. J. Fluorine Chem. 2006, 127, 351.  doi: 10.1016/j.jfluchem.2006.01.003

    15. [15]

      Yang, C.-H.; Fang, K.-H.; Su, W.-L.; Wang, S.-P.; Su, S.-K.; Sun, I.-W. J. Organomet. Chem. 2006, 691, 2767.  doi: 10.1016/j.jorganchem.2006.02.034

    16. [16]

      Higashino, T.; Takemoto, M.; Hayashi, E. Chem. Pharm. Bull. 1985, 33, 1351.  doi: 10.1248/cpb.33.1351

    17. [17]

      Kita, Y.; Higashida, K.; Yamaji, K.; Iimuro, A.; Mashima, K. Chem. Commun. 2015, 51, 4380.  doi: 10.1039/C5CC00258C

    18. [18]

      Yang, Y. Synthesis 2016, 48, 2255.  doi: 10.1055/s-00000084

    19. [19]

      Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem., Int. Ed. 2012, 51, 8077.  doi: 10.1002/anie.v51.32

    20. [20]

      Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017, 53, 23358.
       

    21. [21]

      Bergman, J.; Brynolf, A.; Elman, B.; Vuorinen, E. Tetrahedron 1986, 42, 3697.  doi: 10.1016/S0040-4020(01)87338-5

  • 加载中
    1. [1]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

Metrics
  • PDF Downloads(12)
  • Abstract views(2055)
  • HTML views(469)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return