Citation: Zhang Jiayong, Abudukeremu Munira, Miao Zhiwei. Research Progress of Organophosphine-Catalyzed Annulation Reaction of Electron-Deficient Alkynoates or Ynones[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2859-2872. doi: 10.6023/cjoc201705011 shu

Research Progress of Organophosphine-Catalyzed Annulation Reaction of Electron-Deficient Alkynoates or Ynones

  • Corresponding author: Abudukeremu Munira,  Miao Zhiwei, miaozhiwei@nankai.edu.cn
  • Received Date: 7 May 2017
    Revised Date: 28 June 2017
    Available Online: 7 November 2017

    Fund Project: Project supported by the Committee of Science and Technology of Xinjiang (No. 2016D01A016)the Committee of Science and Technology of Xinjiang 2016D01A016

Figures(17)

  • Organophosphine catalyst is a kind of strong nucleophilic Lewis base. It is widely used in the field of organic synthesis. An active and important zwitterion intermediate can be generated via nucleophilic addition of the tertiary phosphine to electron-deficient alkynoates or ynones and achieves further transformation, including isomerization, α-, β-, γ-addition reactions and [2+2], [3+2], [4+2] cycloaddition reactions. Varieties of pharmaceuticals, natural products and other bioactive moleculars could be efficiently synthesized through organophosphine-catalyzed cycloaddition reaction. The research of organ-ophosphine-catalyzed cycloaddition reaction of electron-deficient alkynoates or ynones has gained more attention. The recent development of organophosphine-catalyzed cycloaddition reaction of electron-deficient alkynoates or ynones is summarized.
  • 加载中
    1. [1]

      For selected reviews on tertiary organophosphine-catalyzed annulation reactions of electron-deficient alkynoates or ynones, see:
      (a) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
      (b) Ye, L. W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
      (c) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520.
      (d) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
      (e) Marinetti, A; Voituriez, A. Synlett 2010, 174.
      (f) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
      (g) Wang, Z. M.; Xu, X. Z.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (h) Xiao, Y.; Guo, H.; Kwon, O. Aldrichim. Acta 2016, 49, 3.

    2. [2]

    3. [3]

      (a) Du, Y. S.; Yu, Y. H.; Lu, X. Y. J. Org. Chem. 2002, 67, 8901.
      (b) Zhao, G. L.; Shi, M. J. Org. Chem. 2005, 70, 9975.
      (c) Sampath, M.; Loh, T. P. Chem. Sci. 2010, 1, 739.
      (d) Mbofana, C. T.; Miller, S. J. ACS Catal. 2014, 4, 3671.
      (e) Lian, Z.; Shi, M. Eur. J. Org. Chem. 2012, 581.
      (f) Kuroda, H.; Tomita, L.; Endo, T. Org. Lett. 2003, 5, 129.
      (g) Ramachary, D. B.; Venkaiah, C.; Madhavachary, R. Org. Lett. 2013, 15, 3042.
      (h) Wei, Y.; Shi, M. Chem.-Asian J. 2014, 9, 2720.
      (i) Wang, S. X.; Han, X. Y.; Zhong, F. R.; Wang, Y. Q.; Lu, Y. X. Synlett 2011, 19, 2766.
      (j) Zhao, Q. Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
      (k) Wang, Z. M.; Xu, X. Z.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (l) Xie, P. Z.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
      (m) Li, W. B.; Zhang, J. L. Chem. Soc. Rev. 2016, 45, 1657.
      (n) Wang, T. L.; Han, X. Y.; Zhong, F. R.; Yao, W. J.; Lu, Y. X. Acc. Chem. Res. 2016, 49, 1369.
      (o) Xiao, Y. M.; Sun, Z. H.; Guo, H. C.; Kwon, O. Beilstein J. Org. Chem. 2014, 10, 2089.

    4. [4]

      Zhang, C. M.; Lu, X. Y. J. Org. Chem. 1995, 60, 2906.  doi: 10.1021/jo00114a048

    5. [5]

      Xu, Z. R.; Lu, X. Y. Tetrahedron lett. 1999, 40, 549.  doi: 10.1016/S0040-4039(98)02405-8

    6. [6]

      Du, Y. S.; Lu, X. Y. J. Org. Chem. 2003, 68, 6463.  doi: 10.1021/jo034281f

    7. [7]

      Pham, T. Q.; Pyne, S. G.; Skelton, B. W.; White, A. H. J. Org. Chem. 2005, 70, 6369.  doi: 10.1021/jo050827h

    8. [8]

      Zhang, X. C.; Cao, S. H.; Wei, Y.; Shi, M. Org. Lett. 2011, 13, 1142.  doi: 10.1021/ol1031798

    9. [9]

      Sampath, M. S.; Loh, T. P. Chem. Sci. 2010, 1, 739.  doi: 10.1039/c0sc00123f

    10. [10]

      Pinto, N.; Neel, M.; Panossian, A.; Retailleau, P.; Frison, G.; Voituriez, A.; Marinetti, A. Chem.-Eur. J. 2010, 16, 1033.  doi: 10.1002/chem.200901893

    11. [11]

      Wang, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855.  doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Mbofana, C. T.; Miller, S. J. ACS Catal. 2014, 4, 3671.  doi: 10.1021/cs501117h

    13. [13]

      Gong, H.; Sun, J.; Yan, C. G. Synthesis 2014, 2327.
       

    14. [14]

      Zhang, X. Y.; Shen, Z.; Hu, L. L.; Wang, L. J.; Lin, Y. S.; Xie, J. W.; Cui, H. L. Tetrahedron Lett. 2016, 57, 3790.  doi: 10.1016/j.tetlet.2016.07.035

    15. [15]

      Zhang, J. Y.; Zhang, M. X.; Li, Y. M.; Liu, S., Miao, Z. W. RSC Adv. 2016, 6, 107984.  doi: 10.1039/C6RA23399F

    16. [16]

      Nozaki, K.; Sato, N.; Ikeda, K.; Takaya, H. J. Org. Chem. 1996, 61, 4516.  doi: 10.1021/jo951828k

    17. [17]

      Sampath, M.; Lee, P. Y. B.; Loh. T. P. Chem. Sci. 2011, 2, 1988.  doi: 10.1039/c1sc00311a

    18. [18]

      Du, D.; Jiang, Y.; Xu, Q.; Shi, M. Adv. Synth. Catal. 2013, 355, 2249.  doi: 10.1002/adsc.201300460

    19. [19]

      Huang, Z. S.; Chen, Q. Q.; Yang, X. Q.; Liu, Y.; Zhang, L.; Liu, T.; Zhou, Q. F. Org. Chem. Front. 2017, 4, 967.  doi: 10.1039/C6QO00775A

    20. [20]

      Li, J. H.; Du, D. M. Adv. Synth. Catal. 2015, 357, 3986.  doi: 10.1002/adsc.201500675

    21. [21]

      Khong, S.; Kwon, O. J. Org. Chem. 2012, 77, 8257.  doi: 10.1021/jo3015825

    22. [22]

      Liou, K. F.; Cheng. C. H. J. Chem. Soc., Chem. Commun., 1995, 2473.
       

    23. [23]

      Wilson, J. E.; Sun, J.; Fu, G. C. Angew. Chem., Int. Ed. 2010, 49, 161.  doi: 10.1002/anie.200905125

    24. [24]

      Pinto, N.; Neel, M.; Panossian, A.; Retailleau, P.; Frison, G.; Voituriez, A.; Marinetti. A. Chem.-Eur. J. 2010, 16, 1033.  doi: 10.1002/chem.200901893

    25. [25]

      Ramachary, D. B.; Venkaiah, C.; Krishna, P. M. Org. Lett. 2013, 15, 4714.  doi: 10.1021/ol4020305

    26. [26]

      Liang, L.; Li, E. Q.; Xie, P. Z.; Huang, Y. Chem.-Asian J. 2014, 9, 1270.  doi: 10.1002/asia.v9.5

    27. [27]

      Kuroda, H.; Tomita, I.; Endo, T. Org. Lett. 2003, 5, 129.  doi: 10.1021/ol020198n

    28. [28]

      Yang, L. H.; Xie, P. Z.; Li, E. Q.; Li, X.; Huang, Y.; Chen, R. Y. Org. Biomol. Chem. 2012, 10, 7628.  doi: 10.1039/c2ob26338f

    29. [29]

      Chen, Q. Q.; Li, K. X.; Lu, T.; Zhou, Q. F. RSC Adv. 2016, 6, 24792.  doi: 10.1039/C6RA00580B

    30. [30]

      Ramachray, D. B.; Krishna, P. M.; Reddy, T. P. Org. Biomol. Chem. 2016, 14, 6413.  doi: 10.1039/C6OB01096B

    31. [31]

      Lian, Z.; Wei, Y.; Shi, M. Tetrahedron 2012, 68, 2401.  doi: 10.1016/j.tet.2012.01.036

    32. [32]

      Lian, Z.; Shi. M. Eur. J. Org. Chem. 2012, 581.

    33. [33]

      Lian, Z.; Shi, M. Org. Biomol. Chem., 2012, 10, 8048.  doi: 10.1039/c2ob25801c

    34. [34]

      Lian, Z.; Xu, Q.; Shi, M. Adv. Synth. Catal. 2013, 355, 3344.  doi: 10.1002/adsc.201300583

    35. [35]

      Li, Z.; Yu, H.; Liu, Y.; Zhou, L. J.; Sun, Z. H.; Guo, H. C. Adv. Synth. Catal. 2016, 358, 1880.  doi: 10.1002/adsc.v358.12

    36. [36]

      Zhu, C. Z.; Sun, Y. L.; Wei, Y.; Shi, Min. Adv. Synth. Catal. 2017, 359, 1263.  doi: 10.1002/adsc.v359.8

  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(16)
  • Abstract views(5583)
  • HTML views(500)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return