Citation: Hao Wenyan, Wang Yuyun, Yang Guomin, Liu Yunyun. Nickel-Catalyzed C-H Halogenation of 8-Aminoquinolines for the Synthesis of C(5) and C(7) Di-halogenated Quinolines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2678-2684. doi: 10.6023/cjoc201704049 shu

Nickel-Catalyzed C-H Halogenation of 8-Aminoquinolines for the Synthesis of C(5) and C(7) Di-halogenated Quinolines

  • Corresponding author: Hao Wenyan, wenyanhao@jxnu.edu.cn Liu Yunyun, chemliuyunyun@jxnu.edu.cn
  • Received Date: 28 April 2017
    Revised Date: 23 June 2017
    Available Online: 4 October 2017

    Fund Project: the Scientific Research Fund of Jiangxi Provincial Education Department GJJ160285the National Natural Science Foundation of China 21762023the National Natural Science Foundation of China 21562024Project supported by the National Natural Science Foundation of China (Nos. 21562024, 21762023) and the Scientific Research Fund of Jiangxi Provincial Education Department (No. GJJ160285)

Figures(5)

  • A simple and efficient nickel-catalyzed oxidative halogenation (Cl, Br) of C(5) and C(7) C-H bond of 8-aminoquinoline amides has been developed. This method employed low-cost and easy availability nickel as catalyst and oxygen as oxidant. The reactions have good functional groups compatibility, giving highly selective C(5) and C(7) di-halogenated products in good to excellent yields.
  • 加载中
    1. [1]

      (a) Kouznetsov, V. V. ; Mendez, L. Y. ; Gomez, C. M. Curr. Org. Chem. 2005, 9, 141.
      (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
      (c) Tokoro, Y. ; Nagai, A. ; Kokado, K. ; Chujo, Y. Macromolecules 2009, 42, 2988.
      (d) Solomon, V. R. ; Lee, H. Curr. Med. Chem. 2011, 18, 1488.
      (e) Liu, G. ; Yi, M. ; Liu, L. ; Wang, J. ; Wang, J. Chem. Commun. 2015, 51, 2911.

    2. [2]

      (a) Madrid, P. B. ; Sherrill, J. ; Liou, A. P. ; Weisman, J. L. ; Derisi, J. L. ; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.
      (b) Tardito, S. ; Barilli, A. ; Bassanetti, I. ; Tegoni, M. ; Bussolati, O. ; Franchi-Gazzola, R. ; Mucchino, C. ; Marchio, L. J. Med. Chem. 2012, 55, 10448.
      (c) Abouelhassan, Y. ; Garrison, V. G. ; Burch, M. ; Wong, W. ; Norwood, V. M. ; Huigens, R. W. Bioorg. Med. Chem. Lett. 2014, 24, 5076.
      (d) Vippagunta, S. R. ; Dorn, A. ; Matile, H. ; Bhattacharjee, A. K. ; Karle, J. M. ; Ellis, W. Y. ; Ridley, R. G. ; Vennerstrom, J. L. J. Med. Chem. 1999, 42, 4630.
      (e) Bhat, S. ; Shim, J. S. ; Zhang, F. ; Chong, C. R. ; Liu, J. O. Org. Biomol. Chem. 2012, 10, 2979.
      (f) Borchardt, R. T. J. Med. Chem. 1973, 16, 382.
      (g) Liu, Y. -C. ; Wei, J. -H. ; Chen, Z. -F. ; Liu, M. ; Gu, Y. -Q. ; Huang, K. -B. ; Li, Z. -Q. ; Liang, H. Eur. J. Med. Chem. 2013, 69, 554.

    3. [3]

      (a) Jiang, H. ; Taggart, H. ; Zhang, X. ; Benbrook, D. M. ; Lind, S. E. ; Ding, W. -Q. Cancer Lett. 2011, 312, 11.
      (b) Heidary, D. K. ; Howerton, B. S. ; Glazer, E. C. J. Med. Chem. 2014, 57, 8936.

    4. [4]

      (a) Sun, K. ; Lv, Y. ; Wang, J. ; Sun, J. ; Liu, L. ; Jia, M. ; Liu, X. ; Z. Li, Z. ; Wang, X. ; Org. Lett. 2015, 17, 4408.
      (b) Wasa, M. ; Worrell, B. T. ; Yu, J. Q. Angew. Chem. , Int. Ed. 2010, 49, 1275.
      (c) Tobisu, M. ; Hyodo, I. ; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070.
      (d) Berman, A. M. ; Lewis, J. C. ; Bergman, R. G. ; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926.
      (e) Zhao, D. ; Wang, W. ; Yang, F. ; Lan, J. ; Yang, L. ; Gao, G. ; You, J. Angew. Chem. , Int. Ed. 2009, 48, 3296.

    5. [5]

      (a) Boudet, N. ; Lachs, J. R. ; Knochel, P. Org. Lett. 2007, 9, 5525.
      (b) Kwak, J. ; Kim, M. ; Chang, S. J. Am. Chem. Soc. 2011, 133, 3780.
      (c) Chen, Q. ; du Jourdin, X. M. ; Knochel, P. J. Am. Chem. Soc. 2013, 135, 4958.
      (d) Tsai, C. -C. ; Shih, W. -C. ; Fang, C. -H. ; Li, C. -Y. ; Ong, T. -G. ; Yap, G. P. J. Am. Chem. Soc. 2010, 132, 11887.

    6. [6]

      (a) Guo, H. ; Chen, M. ; Jiang, P. ; Chen, J. ; Pan, L. ; Wang, M. ; Xie, C. ; Zhang, Y. Tetrahedron 2015, 71, 70.
      (b) Xu, J. ; Zhu, X. ; Zhou, G. ; Ying, B. ; Ye, P. ; Su, L. ; Shen, C. ; Zhang, P. Org. Biomol. Chem. 2016, 14, 3016.
      (c) Liu, X. X. ; Wu, Z, Y. ; Luo, X. L. ; He, Y, Q. ; Zhou, X, Q. ; Fan, Y. X. ; Huang. G. S. RSCAdv. 2016, 6, 71485.

    7. [7]

    8. [8]

      For selected example, (a) Zhang, J. ; Chen, T. ; Yang, J. ; Han, L. Chem. Commun. 2015, 51, 7540.
      (b) Li, X. ; Feng, Z. ; Jiang, Z. ; Zhang, X. Org. Lett. 2015, 17, 5570.
      (c) Li, K. ; Wu, Q. ; Lan, J. ; You, J. Nat. Commun. 2015, 6, 8404.
      (d) Jin, L. ; Wan, L. ; Feng, J. ; Cai, C. Org. Lett. 2015, 17, 4726.

    9. [9]

      (a) Cho, C. S. ; Lee, J. W. ; Lee, D. Y. ; Shim, S. C. ; Kim, T. J. Chem. Commun. 1996, 2115.
      (b) Nogi, K. ; Fujihara, T. ; Terao, J. ; Tsuji, Y. J. Org. Chem. 2015, 80, 11618.
      (c) Tjutrins, J. ; Shao, J. ; Yempally, V. ; Bengali, A. A. ; Arndtsen, B. A. Organometallics 2015, 34, 1802.
      (d) Lo, W. ; Hu, C. ; Berenson, T. ; Tracer, N. ; Shlian, D. ; Khaloo, M. ; Benhaim, A. ; Jiang, J. Chem. Commun. 2015, 51, 9432.
      (e) Hoshimoto, Y. ; Ohata, T. ; Sasaoka, Y. ; Ohashi, M. ; Ogoshi, S. J. Am. Chem. Soc. 2014, 136, 15877.

    10. [10]

      (a) Ohashi, M. ; Kishizaki, O. ; Ikeda, H. ; Ogoshi, S. J. Am. Chem. Soc. 2009, 131, 9160.
      (b) Sato, Y. ; Saito, N. ; Mori, M. J. Am. Chem. Soc. 2000, 122, 2371.
      (c) Yeh, C. H. ; Korivi, R. P. ; Cheng, C. H. Angew. Chem. , Int. Ed. 2008, 47, 4892.
      (d) Stolley, R. M. ; Duong, H. A. ; Thomas, D. R. ; Louie, J. J. Am. Chem. Soc. 2012, 134, 15154.
      (e) Thakur, A. ; Facer, M. E. ; Louie, J. Angew. Chem. , Int. Ed. 2013, 52, 12161.

    11. [11]

      Zhan, B.-B.; Liu, Y.-H.; Hu, F.; Shi, B.-F. Chem. Commun. 2016, 52, 4934.  doi: 10.1039/C6CC00822D

    12. [12]

      (a) Hao, W. Y. ; Tian, J. ; Li, W. ; Shi, R. ; Huang, Z. ; Lei. A. W. Chem. Asian J. 2016, 11, 1664.
      (b) Wan, J. -P. ; Li, Y. ; Liu, Y. Org. Chem. Front. 2016, 3, 768.
      (c) Liu, Y. ; Huang, M. ; Wei, L. Asian J. Org. Chem. 2017, 6, 41.

    13. [13]

      He, Y.; Zhao, N.; Qiu, L.; Zhang, X.; Fan, X. Org. Lett. 2016, 18, 6054.  doi: 10.1021/acs.orglett.6b02998

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    11. [11]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    12. [12]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    17. [17]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    18. [18]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    19. [19]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    20. [20]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

Metrics
  • PDF Downloads(5)
  • Abstract views(1651)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return