Citation: Zhang Xinming, Guo Yujun, Tao Guide, Zhang Wu. Aerobic Oxidation for the Synthesis of N-Substituted α-Hydroxyl Phenylacetamides Promoted by Base[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2993-2999. doi: 10.6023/cjoc201704037 shu

Aerobic Oxidation for the Synthesis of N-Substituted α-Hydroxyl Phenylacetamides Promoted by Base

  • Corresponding author: Zhang Wu, zhangwu@mail.ahnu.edu.cn
  • Received Date: 22 April 2017
    Revised Date: 3 July 2017
    Available Online: 7 November 2017

    Fund Project: the National Natural Science Foundation of China 21272006Project supported by the National Natural Science Foundation of China (No. 21272006)

Figures(3)

  • α-Hydroxyl amides are important skeleton and valuable intermediates that present in many natural products, pharmaceutical active compounds, and organic functional materials. The main methods for synthesis of α-hydroxyl amides are either through amidation of α-hydroxyl acids, or by reduction of α-keto amides. Herein, a convenient potassium hydroxide/dimethyl sulfoxide promoted aerobic oxidation reaction to prepare N-substituted α-hydroxyl phenylacetamides is reported in good to high yields. 21 corresponding products were obtained and characterized by 1H NMR, 13C NMR and HRMS. The molecular structure of 2-(2-bromophenyl)-2-hydroxy-N-(p-tolyl)acetamide (2a) was confirmed by using single-crystal X-ray analyses.
  • 加载中
    1. [1]

      Pansare, S. V.; Ravi, R. G.; Jain, R. P. J. Org. Chem. 1998, 63, 4120.  doi: 10.1021/jo9722820

    2. [2]

      Chen, C. T.; Bettigeri, S.; Weng, S. S.; Pawar, V. D.; Lin, Y. H.; Liu, C. Y.; Lee, W. Z. J. Org. Chem. 2007, 72, 8175.  doi: 10.1021/jo070575f

    3. [3]

      Szymanski, W.; Westerbeek, A.; Janssen, D, B.; Feringa, B, L. Angew. Chem., Int. Ed. 2011, 50, 10712.  doi: 10.1002/anie.201105164

    4. [4]

      Zhang, M.; Imm, S.; Bahn, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 11197.  doi: 10.1002/anie.v50.47

    5. [5]

      Katritzky, A. R.; Singh, S. K.; Cai, C.; Bobrov, S. J. Org. Chem. 2006, 71, 3364.  doi: 10.1021/jo052293q

    6. [6]

      Pailloux, S.; Binyamin, I.; Deck, L. M.; Rapko, B. M.; Hay, B. P.; Duesler, E. N.; Paine, R. T. J. Org. Chem. 2007, 72, 9195.  doi: 10.1021/jo701408y

    7. [7]

      Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14544.  doi: 10.1021/ja028454e

    8. [8]

      Kikugawa, Y.; Matsumoto, K.; Mitsui, K. J. Chem. Soc., Chem. Commun. 1992, 12, 921.

    9. [9]

      Denmark, S. E.; Fan, Y. J. Org. Chem. 2005, 70, 9667.  doi: 10.1021/jo050549m

    10. [10]

      Yao, Y.; Li, W. D.; Tong, W. T.; Chen, J. X. Chin. J. Org. Chem. 2015, 35, 223(in Chinese).
       

    11. [11]

      (a) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400.
      (b) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062.

    12. [12]

      (a) Gassman, P. G.; Halweg, K. M. J. Org. Chem. 1979, 44, 628.
      (b) Sereda, G.; Rajpara, V. Tetrahedron Lett. 2007, 48, 3417.
      (c) Hamano, M.; Nagy, K. D.; Jensen, K. F. Chem. Commun. 2012, 48, 2086.
      (d) Zheng, G.; Liu, H.; Wang, M. Chin. J. Chem. 2016, 34, 519.
      (e) Zhang, J.; Jiang, Z. Q.; Zhao, D.; He, G. Z.; Zhou, S. L.; Han, S. Q. Chin. J. Chem. 2013, 31, 794.

    13. [13]

      Watanabe, T.; Ishikawa, T. Tetrahedron Lett. 1999, 40, 7795.  doi: 10.1016/S0040-4039(99)01618-4

    14. [14]

      Song, B. G.; Wang, S. Y.; Sun, C. Y.; Deng, H. M.; Xu, B. Tetrahedron Lett. 2007, 48, 8982.  doi: 10.1016/j.tetlet.2007.10.099

    15. [15]

      (a) Trofimov, B. A.; Malysheva, S. F.; Gusarova, N. K.; Kuimov, V. A.; Belogorlova, N. A.; Sukhov, B. G. Tetrahedron Lett. 2008, 49, 3480.
      (b) Duan, Z. G.; Ranjit, S.; Liu, X. G. Org. Lett. 2010, 12, 2430.
      (c) Yuan, Y.; Thome, I.; Kim, S. H.; Chen, D.; Beyer, A.; Bonnamour, J.; Zuidema, E.; Chang, S.; Bolm, C. Adv. Synth. Catal. 2010, 352, 2892.
      (d) Beyer, A.; Reucher, C. M. M.; Bolm, C. Org. Lett. 2011, 13, 2876.

    16. [16]

      (a) Lipton, S. H.; Bodwell, C. E. J. Agric. Food Chem. 1976, 24, 26.
      (b) Gogoi, P.; Sarmah, G. K.; Konwar, D. J. Org. Chem. 2004, 69, 5153.
      (c) Le, H. V.; Ganem, B. Org. Lett, 2011, 13, 2584.
      (d) Chaudhari, M. B.; Sutar, Y.; Malpathak, S.; Hazra, A.; Gnanaprakasam, B. Org. Lett. 2017, 19, 3628.

    17. [17]

      (a) Avramoff, M.; Sprinzak, Y. J. Am. Chem. Soc. 1963, 85, 1655.
      (b) Wasserman, H. H.; Lipahutz, B. H. Tetrahedron Lett. 1975, 16, 1731.

    18. [18]

      Sun, J.; Liu, B. X.; Xu, B. RSC Adv. 2013, 3, 5824.  doi: 10.1039/c3ra40657a

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    6. [6]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(2)
  • Abstract views(1284)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return