Citation: Deng Yingying, Yang Wen, Yang Xin, Yang Dingqiao. Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions with Allylic Esters[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3039-3059. doi: 10.6023/cjoc201704034 shu

Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions with Allylic Esters

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 19 April 2017
    Revised Date: 21 June 2017
    Available Online: 11 December 2017

    Fund Project: the Natural Science Foundation of Guangdong Province S2013020013091the Science and Technology Plan Projects of Guangzhou Cit 201510010054the National Natural Science Foundation of China 21172081Project supported by the National Natural Science Foundation of China (Nos. 21172081, 21372090), the Natural Science Foundation of Guangdong Province (No. S2013020013091) and the Science and Technology Plan Projects of Guangzhou City (No. 201510010054)the National Natural Science Foundation of China 21372090

Figures(14)

  • Iridium-catalyzed asymmetric allylic substitution reaction is one of the most important methods for the synthesis of chiral compounds. The recent research progress in iridium-catalyzed asymmetric allylic substitution reactions of allylic ester and its derivatives is reviewed with focus on the influences of the iridium catalysts, the substrate structures of allylic ester and its derivatives, the type of nucleophiles, the effects of solvents and additives on asymmetric substitution reaction. Moreover, the possible mechanisms are also discussed in this review.
  • 加载中
    1. [1]

      (a) Liu, Z.-Q.; Du, H.-F. Org. Lett. 2010, 12, 3054.
      (b) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716.
      (c) Suetsugu, S.; Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16, 996.
      (d) Katcher, M. H.; Norrby, P. O.; Doyle, A. G. Organometallics 2014, 33, 2121.

    2. [2]

      (a) Hughes, D. L.; Lloyd-Jones, G. C.; Krska, S. W.; Gouriou, L.; Bonnet, V. D.; Jack, K.; Sun, Y.-K.; David, J. M.; Reamer, R. A. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5379.
      (b) Litto, R. D.; Benessere, V.; Ruffo, F.; Moberg, C. Eur. J. Org. Chem. 2009, 1352.

    3. [3]

      Moberg, C. Top Organomet. Chem. 2012, 38, 209.

    4. [4]

      (a) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462.
      (b) Jegelka, M.; Plietker, B. Chem. Eur. J. 2011, 17, 10417.

    5. [5]

      (a) Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 18697.
      (b) Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.

    6. [6]

      Tan, Z.-Z.; Wan, X.-L.; Zang, Z.-H.; Qian, Q.; Deng, W.; Gong, H.-G. Chem. Commun. 2014, 50, 3827.  doi: 10.1039/C3CC49859J

    7. [7]

      (a) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.; Samas, B. M. Org. Lett. 2009, 11, 3140.
      (b) Arnold, J. S.; Nguyen, H. M. J. Am. Chem. Soc. 2012, 134, 8380.

    8. [8]

      (a) Yang, S.-C.; Feng, W.-H.; Gan, K.-H. Tetrahedron 2006, 62, 3752.
      (b) Zhang, M.; Watanabe, K. J.; Tsukamoto, M.; Shibuya, R.; Morimoto, H.; Ohshima, T. Chem.-Eur. J. 2015, 21, 1.

    9. [9]

      Guduguntla, S.; Hornillos, V.; Tessier, R.; Fañanás-Mastral, M.; Feringa, B. L. Org. Lett. 2016, 18, 252.  doi: 10.1021/acs.orglett.5b03396

    10. [10]

      Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.  doi: 10.1039/c2ob07086c

    11. [11]

      Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.  doi: 10.1021/ar500167f

    12. [12]

      Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.  doi: 10.1021/acscatal.6b01886

    13. [13]

      Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.  doi: 10.1016/S0040-4039(97)10220-9

    15. [15]

      Butt, N. A.; Zhang, W.-B. Chem. Soc. Rev. 2015, 44, 7929.  doi: 10.1039/C5CS00144G

    16. [16]

      Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
       

    17. [17]

      Wu, Y.-J.; Long, Y.-H.; Yang, D.-Q. Chin. J. Org. Chem. 2009, 29, 1522(in Chinese).
       

    18. [18]

      Giacomina, F.; Riat, D.; Alexakis, A. Org. Lett. 2010, 12, 1156.  doi: 10.1021/ol100162y

    19. [19]

      Stanley, L. M.; Bai, C.; Ueda, M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 8918.  doi: 10.1021/ja103779e

    20. [20]

      Zhao, Z.-L.; Gu, Q.; Wu, X.-Y.; You, S.-L. Chin. Chem. Lett. 2016, 27, 619.  doi: 10.1016/j.cclet.2016.02.017

    21. [21]

      Bondzic, B. P.; Farwick, A.; Liebich, J.; Eilbracht, P. Org. Biomol. Chem. 2008, 6, 3723.  doi: 10.1039/b809143a

    22. [22]

      Liu, W.-B.; Zheng, S.-C.; He, H.; Zhao, X.-M.; Dai, L.-X.; You, S.-L. Chem. Commun. 2009, 6604.
       

    23. [23]

      Zhang, H.-B.; Chen, J.-T.; Zhao, X.-M. Org. Biomol. Chem. 2016, 14, 7183.  doi: 10.1039/C6OB01246A

    24. [24]

      Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.  doi: 10.1021/ja210923k

    25. [25]

      Xu, Q.-L.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012, 354, 2275.  doi: 10.1002/adsc.v354.11/12

    26. [26]

      Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D.-W. ACS Catal. 2016, 6, 3381.  doi: 10.1021/acscatal.6b00719

    27. [27]

      (a) Trost, B. M.; Jiang, C. H. Synthesis 2006, 369.
      (b) Behenna, D. C.; Stoltz, B. M. Top Organomet. Chem. 2013, 44, 281.

    28. [28]

      Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2068.  doi: 10.1021/ja311363a

    29. [29]

      Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 377.  doi: 10.1021/ja410650e

    30. [30]

      Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626.  doi: 10.1021/ja4052075

    31. [31]

      Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 17298.  doi: 10.1021/ja4097829

    32. [32]

      Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 5234.  doi: 10.1021/jacs.6b02153

    33. [33]

      Liu, J.; Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D.-W. J. Am. Chem. Soc. 2016, 138, 13103.  doi: 10.1021/jacs.6b05288

    34. [34]

      (a) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
      (b) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.

    35. [35]

      (a) Yao, K.; Liu, D.-L.; Yuan, Q.-J.; Imamoto, T.; Liu, Y.-G.; Zhang, W.-B. Org. Lett. 2016, 18, 6296.
      (b) Huo, X.-H.; Yang, G.-Q.; Liu, D.-L.; Liu, Y.-G.; Gridnev, I. D.; Zhang, W.-B. Angew. Chem., Int. Ed. 2014, 53, 6776.

    36. [36]

      Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.  doi: 10.1126/science.1237068

    37. [37]

      Wei, X.; Liu, D.-L.; An, Q.-J.; Zhang, W.-B. Org. Lett. 2015, 17, 5768.  doi: 10.1021/acs.orglett.5b02868

    38. [38]

      Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Org. Lett. 2008, 10, 1815.  doi: 10.1021/ol800409d

    39. [39]

      Zhou, C.-X.; Wu, Q.-F.; Zhou, Q.; Xu, Q.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 8169.  doi: 10.1021/ja403535a

    40. [40]

      Zhuo, C.-X.; Cheng, Q.; Liu, W.-B.; Zhao, Q.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 8475.  doi: 10.1002/anie.201502259

    41. [41]

      Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong, Z.-Q.; Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455.  doi: 10.1002/anie.201100206

    42. [42]

      Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 2579.  doi: 10.1021/ol3008793

    43. [43]

      Cheng, Q.; Wang, Y.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 3496.  doi: 10.1002/anie.201511519

    44. [44]

      Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 15249.  doi: 10.1021/ja306850b

    45. [45]

      Chen, W.-Y.; Chen, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 15825.  doi: 10.1021/ja506500u

    46. [46]

      Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8691.  doi: 10.1002/anie.201403844

    47. [47]

      Chen, M.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 13972.  doi: 10.1021/jacs.5b09980

    48. [48]

      Chen, M.:Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 12172.  doi: 10.1002/anie.201406778

    49. [49]

      Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 11651.  doi: 10.1002/anie.201607053

    50. [50]

      Jiang, X.-Y.; Chen, W.-Y.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 5819.  doi: 10.1002/anie.201600235

    51. [51]

      Alexakis, A.; Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.  doi: 10.1021/ol0713842

    52. [52]

      Polet, D.; Rathgeb, X.; Falciola, C. A.; Langlois, J. B.; Hajjaji, S. E.; Alexakis, A. Chem. Eur. J. 2009, 15, 1205.  doi: 10.1002/chem.200801879

    53. [53]

      Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 7644.  doi: 10.1002/anie.201501851

    54. [54]

      Liu, X.-J.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 4002.  doi: 10.1002/anie.201700433

    55. [55]

      Breitler, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 5296.  doi: 10.1021/jacs.5b01951

    56. [56]

      Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 3949.  doi: 10.1021/ol701562p

    57. [57]

      Pouy, M. J.; Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312.  doi: 10.1021/ja905059r

    58. [58]

      Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew. Chem., Int. Ed. 2006, 45, 5546.  doi: 10.1002/(ISSN)1521-3773

    59. [59]

      Spiess, S.; Berthold, C.; Weihofen, R.; Helmchen, G. Org. Biomol. Chem. 2007, 5, 2357.  doi: 10.1039/B708571K

    60. [60]

      Weix, D. J.; Markovic, D.; Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 11, 2944.  doi: 10.1021/ol901151u

    61. [61]

      Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680.  doi: 10.1021/ja074584h

    62. [62]

      Ye, K.-Y.; Dai, L.-X.; You, S.-L. Org. Biomol. Chem. 2012, 10, 5932.  doi: 10.1039/c2ob00036a

    63. [63]

      Ye, K.-Y.; Dai, L.-X.; You, S.-L. Chem. Eur. J. 2014, 20, 3040.  doi: 10.1002/chem.201400026

    64. [64]

      Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8971.  doi: 10.1021/ja902243s

    65. [65]

      Liu, W.-B.; Zhang, X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 5183.  doi: 10.1002/anie.201200649

    66. [66]

      Yang, Z.-P.; Wu, Q.-F.; You, S.-L. Angew. Chem., Int. Ed. 2014, 53, 6986.  doi: 10.1002/anie.201404286

    67. [67]

      Zhang, X.; Yang, Z.-P.; Huang, L.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 1873  doi: 10.1002/anie.201409976

    68. [68]

      Yang, Z.-P.; Wu, Q.-F.; Shao, W.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 15899.  doi: 10.1021/jacs.5b10440

    69. [69]

      Zhuo, C.-X.; Zhang, X.; You, S.-L. ACS Catal. 2016, 6, 5307.  doi: 10.1021/acscatal.6b01585

    70. [70]

      Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.  doi: 10.1002/anie.201603266

    71. [71]

      Yang, Z.-P.; Zheng, C.; Huang, L.; Qian, C.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 1530.  doi: 10.1002/anie.201611056

    72. [72]

      Miyabe, H.; Yoshida, K.; Reddy, V. K.; Takemoto, Y. J. Org. Chem. 2009, 74, 305.  doi: 10.1021/jo802271d

    73. [73]

      Gärtner, M.; Jäkel, M.; Achatz, M.; Sonnenschein, C.; Tverskoy, O.; Helmchen, G. Org. Lett. 2011, 13, 2810.  doi: 10.1021/ol200688d

    74. [74]

      Lee, J.-H.; Lee, S.-G. Chem. Sci. 2013, 4, 2922.  doi: 10.1039/c3sc50901j

    75. [75]

      Satyanarayana, G.; Helmchen, G. Eur. J. Org. Chem. 2014, 2242.

    76. [76]

      Grange, R. L.; Clizbe, E. A.; Counsell, E. J.; Evans, A. P. Chem. Sci. 2015, 6, 777.  doi: 10.1039/C4SC01317D

    77. [77]

      Kimura, M.; Uozumi, Y. J. Org. Chem. 2007, 72, 707.  doi: 10.1021/jo0615403

    78. [78]

      He, H.; Ye, K.-Y.; Wu, Q.-F.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012, 354, 1084.  doi: 10.1002/adsc.201100809

    79. [79]

      Qu, J.-P.; Roβberg, L.; Helmchen, G. J. Am. Chem. Soc. 2014, 136, 1272.  doi: 10.1021/ja411869r

    80. [80]

      Zhao, D.-P.; Martin, F. M.; Chang, M.-C.; Otten, E.; Feringa, B. L. Chem. Sci. 2014, 5, 4216.  doi: 10.1039/C4SC01940G

    81. [81]

      Zheng, S.-C.; Zhang, M.; Zhao. X.-M. Chem. Eur. J. 2014, 20, 1.  doi: 10.1002/chem.201390210

    82. [82]

      Zhang, M.; Zheng, S.-C.; Zhao, X.-M. Chem. Commun. 2014, 50, 4455.  doi: 10.1039/c4cc00413b

    83. [83]

      Gärtner, M.; Mader, S.; Seehafer, K.; Helmchen, G. J. Am. Chem. Soc. 2011, 133, 2072.  doi: 10.1021/ja109953v

    84. [84]

      Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2010, 12, 800.  doi: 10.1021/ol902873q

    85. [85]

      Ueda, M.; Hartwing, J. F. Org. Lett. 2010, 12, 92.  doi: 10.1021/ol9023248

    86. [86]

      Liu, W.; Zhao, X.-M.; Zhang, H.-B.; Zhang, L.; Zhao, M.-Z. Chem. Eur. J. 2014, 20, 16873.  doi: 10.1002/chem.201405058

    87. [87]

      Zheng, S.-C.; Gao, N.; Liu, W.; Liu, D.-G.; Zhao, X.-M.; Cohen, T. Org. Lett. 2010, 12, 4454.  doi: 10.1021/ol101915b

    88. [88]

      Zheng, S.-C.; Huang, W.-Q.; Gao, N.; Cui, R.-M.; Zhang, M.; Zhao, X.-M. Chem. Commum. 2011, 47, 6969.  doi: 10.1039/c1cc11930c

    89. [89]

      Huang, W.-Q.; Zheng, S.-C.; Tang, J.-L.; Zhao, X.-M. Org. Biomol. Chem. 2011, 9, 7897.  doi: 10.1039/c1ob06332d

    90. [90]

      Gao, N.; Zhao, X.-M. Eur. J. Org. Chem. 2013, 2708.

    91. [91]

      Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318.  doi: 10.1021/ja2087213

    92. [92]

      Zhang, Q.; Stockdale, D. P.; Mixdorf, J. C.; Topczewski, J. J.; Nguyen, H. M. J. Am. Chem. Soc. 2015, 137, 11912.  doi: 10.1021/jacs.5b07492

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

Metrics
  • PDF Downloads(44)
  • Abstract views(5128)
  • HTML views(588)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return