Citation: Wu Zhengxing, Zhang Wanbin. Recent Advances in Metal-Catalyzed 1, 2-Difunctionalization of Conjugated Dienes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2250-2262. doi: 10.6023/cjoc201704031 shu

Recent Advances in Metal-Catalyzed 1, 2-Difunctionalization of Conjugated Dienes

  • Corresponding author: Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 18 April 2017
    Revised Date: 22 May 2017
    Available Online: 24 September 2017

    Fund Project: the Program of Shanghai Subject Chief Scientists 14XD1402300the National Natural Science Foundation of China 21232004the National Natural Science Foundation of China 21672142the Basic Research Foundation of Shanghai Science and Technology Committee 15JC1402200Project supported by the National Natural Science Foundation of China (Nos. 21232004, 21672142), the Program of Shanghai Subject Chief Scientists (No.14XD1402300) and the Basic Research Foundation of Shanghai Science and Technology Committee (No. 15JC1402200)

Figures(9)

  • The 1, 2-difunctionalization of conjugated dienes is an important homogeneous catalytic reaction. The obtained products through 1, 2-difunctionalization are widely existed in natural products and bioactive compounds, and are also sources of important organic intermediates, in addition, the preserved double bond in the difunctionalized product can be further transformed to give the desired structures or be functionalized sequentially to achieve multi-functionalization. The main difficulties focus on the encountered complex selectivities, including the regioselectivity, chemoselectivity and stereoselectivity in reactions. In recent years, with the development of organometallic chemistry, metal palladium, copper, iron or silver catalyzed 1, 2-difunctionalizations of conjugated dienes have been reported in succession. In some cases the enantioselective 1, 2-difunctionalizations of conjugated dienes were achieved via the introduction of chiral ligands. This review mainly focus on the recent metal catalyzed 1, 2-difunctionalizations of conjugated dienes.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Prileschajew, N. Eur. J. Inorg. Chem. 1909, 42, 4811.

    4. [4]

      Gilman, H. Organic Chemistry:An Advanced Treatise, Vol. 1, Wiley, New York, 1938, p. 36.

    5. [5]

      (a) Criegee, R. Justus Liebigs Ann. Chem. 1936, 522, 75.
      (b) Criegee, R. Angew. Chem. 1937, 50, 153.

    6. [6]

      Kwart, H.; Kahn, A. A. J. Am. Chem. Soc. 1967, 89, 1950.  doi: 10.1021/ja00984a034

    7. [7]

      (a) Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305.
      (b) Chong, A. O.; Oshima, K.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 3420.

    8. [8]

      (a) Bäckvall, J.-E. Tetrahedron Lett. 1978, 19, 163.
      (b) Bäckvall, J.-E.; Björkman, E. E. J. Org. Chem. 1980, 45, 2893.

    9. [9]

      (a) Sharpless, K. B.; Chong, A. O.; Oshima, K. J. Org. Chem. 1976, 41, 177.
      (b) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263.
      (c) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
      (d) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.

    10. [10]

      (a) Aranyos, A.; Szabó, K. J.; Bäckvall, J.-E. J. Org. Chem. 1998, 63, 2523.
      (b) Itami, K.; Palmgren, A.; Thorarensen, A.; Bäckvall, J.-E. J. Org. Chem. 1998, 63, 6466.
      (c) Palmgren, A.; Larsson, A. L. E.; Bäckvall, J.-E. J. Org. Chem. 1999, 64, 836.
      (d) Löfstedt, J.; Närhi, K.; Dorange, I.; Bäckvall, J.-E. J. Org. Chem. 2003, 68, 7243.
      (e) Verboom, R. C.; Persson, B. A.; Bäckvall, J.-E. J. Org. Chem. 2004, 69, 3102.
      (f) Piera, J.; Persson, A.; Caldentey, X.; Bäckvall, J.-E. J. Am. Chem. Soc. 2007, 129, 14120.
      (g) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134.
      (h) Schuster, C. H.; Li, B.; Morken, J. P. Angew. Chem. Int. Ed. 2011, 50, 7906.

    11. [11]

      Xu, D.; Crispino, G. A.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, 7571.  doi: 10.1021/ja00045a044

    12. [12]

      O'Connor, J. M.; Stallman, B. J.; Clark, W. G.; Shu, A. Y. L.; Spada, R. E.; Stevenson, T. M.; Dieck, H. A. J. Org. Chem. 1983, 48, 807.  doi: 10.1021/jo00154a010

    13. [13]

      (a) Larock, R. C.; Fried, C. A. J. Am. Chem. Soc. 1990, 112, 5882.
      (b) Larock, R. C.; Berrios-Pena, N. G.; Narayanan, K. J. Org. Chem. 1990, 55, 3447.

    14. [14]

      (a) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
      (b) Zhao, B.; Du, H.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 3523.

    15. [15]

      Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784.  doi: 10.1021/ja201358b

    16. [16]

      Larock, R. C.; Harrison, L. W.; Hsu, M. H. J. Org. Chem. 1984, 49, 3662.  doi: 10.1021/jo00193a047

    17. [17]

      Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.  doi: 10.1021/ja051181d

    18. [18]

      Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066.  doi: 10.1021/ja803397y

    19. [19]

      Xing, D.; Yang, D. Org. Lett. 2013, 15, 4370.  doi: 10.1021/ol401901h

    20. [20]

      Cooper, S. P.; Booker-Milburn, K. I. Angew. Chem. Int. Ed. 2015, 54, 6496.  doi: 10.1002/anie.201501037

    21. [21]

      (a) Kagechika, K.; Shibasaki, M. J. Org. Chem. 1991, 56, 4093.
      (b) Kagechika, K.; Ohshima, T.; Shibasaki, M. Tetrahedron 1993, 49, 1773.
      (c) Ohshima, T.; Kagechika, K.; Adachi, A.; Sodeoka, M.; Shibasaki, M. J. Am. Chem. Soc. 1996, 118, 7108.

    22. [22]

      Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 11688.  doi: 10.1021/ja074698t

    23. [23]

      Cornwall, R. G.; Zhao, B.; Shi, Y. Org. Lett. 2013, 15, 796.  doi: 10.1021/ol303469a

    24. [24]

      Stokes, B. J.; Liao, L.; de Andrade, A. M.; Wang, Q.; Sigman, M. S. Org. Lett. 2014, 16, 4666.  doi: 10.1021/ol502279u

    25. [25]

      Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L. L.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 13476.  doi: 10.1021/jacs.5b08734

    26. [26]

      Liu, Y.; Xie, Y.; Wang, H.; Huang, H. J. Am. Chem. Soc. 2016, 138, 4314.  doi: 10.1021/jacs.6b00976

    27. [27]

      Chen, S.-S.; Meng, J.; Li, Y.-H.; Han, Z.-Y. J. Org. Chem., 2016, 81, 9402.  doi: 10.1021/acs.joc.6b01611

    28. [28]

      Chen, S.-S.; Wu, M.-S.; Han, Z.-Y. Angew. Chem., Int. Ed. 2017, 56, 6641.  doi: 10.1002/anie.201702745

    29. [29]

      Yuan, W.; Du, H.; Zhao, B.; Shi, Y. Org. Lett. 2007, 9, 2589.  doi: 10.1021/ol071105a

    30. [30]

      Zhao, B.; Peng, X.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 11009.  doi: 10.1021/ja103838d

    31. [31]

      Zhao, B.; Peng, X.; Zhu, Y.; Ramirez, T. A.; Cornwall, R. G.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 20890.  doi: 10.1021/ja207691a

    32. [32]

      Michaelis, D. J.; Ischay, M. A.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 6610.  doi: 10.1021/ja800495r

    33. [33]

      Du, H.; Zhao, B.; Yuan, W.; Shi, Y. Org. Lett. 2008, 10, 4231.  doi: 10.1021/ol801605w

    34. [34]

      Zhao, B.; Du, H.; Shi, Y. J. Org. Chem. 2009, 74, 8392.  doi: 10.1021/jo901685c

    35. [35]

      Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570.  doi: 10.1021/ja1013536

    36. [36]

      Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2012, 134, 12370.  doi: 10.1021/ja3046684

    37. [37]

      (a) Llaveria, J.; Beltrán, Á.; Díaz-Requejo, M. M.; Matheu, M. I.; Castillón, S.; Pérez, P. J. Angew. Chem. Int. Ed. 2010, 49, 7092.
      (b) Llaveria, J.; Beltrán, Á.; Sameera, W. M. C.; Locati, A.; Díaz-Requejo, M. M.; Matheu, M. I.; Castillón, S.; Maseras, F.; Pérez, P. J. J. Am. Chem. Soc. 2014, 136, 5342.

  • 加载中
    1. [1]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    2. [2]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    20. [20]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

Metrics
  • PDF Downloads(63)
  • Abstract views(3294)
  • HTML views(702)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return