Citation: Zhang Zhihu, Chen Yu, Chai Baoshan, Yang Xiaoman, Cai Xiaoyu, Cui Bo, You Song. Synthesis, Anticancer and Antibacterial Activities of Novel 2-Amino-4-phenylthiazole Derivatives Containing Amide Moiety[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2377-2384. doi: 10.6023/cjoc201704023 shu

Synthesis, Anticancer and Antibacterial Activities of Novel 2-Amino-4-phenylthiazole Derivatives Containing Amide Moiety

  • Corresponding author: You Song, yousong206@aliyun.com
  • Received Date: 13 April 2017
    Revised Date: 23 April 2017
    Available Online: 4 September 2017

Figures(4)

  • A series of novel 2-amino-4-phenylthiazole derivatives containing amide moiety were designed and synthesized based on the structural features of sorafenib. The structures of synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS. Both the anticancer and antibacterial activities of all the target compounds were evaluated. Most of the compounds showed potent activities, especially N-(3-(2-acetamidothiazol-4-yl)phenyl)-3-fluorobenzamide (4n) exhibited a remarkable antitumor effect against human colon cancer cell line (HT29) and human lung epithelial cells (A549) cells with IC50 values of 6.31 and 7.98 μmol·L-1, respectively. Further mechanistic study revealed that 4n can influence the Raf/MEK/ERK pathway. In addition, N-(3-(2-acetamidothiazol-4-yl)phenyl)-3, 4-dichlorobenzamide (4h), N-(3-(2-acetamidothiazol-4-yl)phenyl)-3-chlorobenzamide (4i) and N-(3-(2-acetamidothiazol-4-yl)phenyl)-2, 4-dichlorobenzamide (4o) exhibit moderate antibacterial activity against the tested bacteria.
  • 加载中
    1. [1]

      (a) Heidorn, S. J.; Milagre, C.; Whittaker, S.; Nourry, A.; Niculescuduvas, I.; Dhomen, N.; Hussain, J.; Reisfilho, J. S.; Springer, C. J.; Pritchard, C. Cell 2010, 140, 209.
      (b) Hatzivassiliou, G.; Song, K.; Yen, I.; Brandhuber, B. J.; Anderson, D. J.; Alvarado, R.; Ludlam, M. J.; Stokoe, D.; Gloor, S. L.; Vigers, G. Nature 2010, 464, 431.

    2. [2]

      Eisen, T.; Ahmad, T.; Flaherty, K. T.; Gore, M.; Kaye, S.; Marais, R.; Gibbens, I.; Hackett, S.; James, M.; Schuchter, L. M. Br. J. Cancer 2006, 95, 581.  doi: 10.1038/sj.bjc.6603291

    3. [3]

      (a) Wood, L. S. Community Oncol. 2006, 3, 558.
      (b) Chu, E. Y. ; Wanat, K. A. ; Miller, C. J. ; Amaravadi, R. K. ; Fecher, L. A. ; Brose, M. S. ; McGettigan, S. ; Giles, L. R. ; Schuchter, L. M. ; Seykora, J. T. J. Am. Acad. Dermatol. 2012, 67, 1265.
      (c) Autier, J. ; Escudier, B. ; Wechsler, J. ; Spatz, A. ; Robert, C. Arch. Dermatol. 2008, 144, 886.

    4. [4]

      (a) Wu, C.; Wang, M.; Tang, Q.; Luo, R.; Chen, L.; Zheng, P.; Zhu, W. Molecules 2015, 20, 19361.
      (b) Yao, J.; Chen, J.; He, Z.; Sun, W.; Xu, W. Bioorg. Med. Chem. 2012, 20, 2923.
      (c) Jung, M. H.; El-Gamal, M. I.; Abdel-Maksoud, M. S.; Sim, T.; Yoo, K. H.; Oh, C.-H. Bioorg. Med. Chem. Lett. 2012, 22, 4362.
      (d) Jiao, Y.; Xin, B. T.; Zhang, Y.; Wu, J.; Lu, X.; Zheng, Y.; Tang, W.; Zhou, X. Eur. J. Med. Chem. 2015, 90, 170.
      (e) Kong, X.; Yao, Z.; He, Z.; Xu, W.; Yao, J. MedChemComm 2015, 6, 867.
      (f) Daydé-Cazals, B.; Fauvel, B.; Singer, M.; Feneyrolles, C.; Bestgen, B.; Gassiot, F.; Spenlinhauer, A.; Warnault, P.; Van Hijfte, N.; Borjini, N.; Chevé, G.; Yasri, A. J. Med. Chem. 2016, 59, 3886.
      (g) Yao, J.; He, Z.; Chen, J.; Chen, D.; Sun, W.; Xu, W. Chin. J. Chem. 2012, 30, 2423.

    5. [5]

      (a) Gao, G. R.; Li, M. Y.; Lv, Y. C.; Cao, S. F.; Tong, L. J.; Wei, L. X.; Ding, J.; Xie, H.; Duan, W. H. Chin. Chem. Lett. 2016, 27, 200.
      (b) Wu, Z.; Yan, M.; Hu, S. H.; Yu, Z. C.; Zhu, Y.; Cheng, Y. D.; Liu, H. C.; Zhang, Y. M.; Yao, S. H.; Tang, W. F.; Lu, T. Chin. Chem. Lett. 2014, 25, 351.

    6. [6]

      Liu, Y.; Gray, N. S. Nat. Chem. Biol. 2006, 2, 358.  doi: 10.1038/nchembio799

    7. [7]

      Das, D.; Sikdar, P.; Bairagi, M. Eur. J. Med. Chem. 2016, 109, 89.  doi: 10.1016/j.ejmech.2015.12.022

    8. [8]

      (a) Bharti, S. K.; Nath, G.; Tilak, R.; Singh, S. K. Eur. J. Med. Chem. 2010, 45, 651.
      (b) Qin, Y. J.; Wang, P. F.; Makawana, J. A.; Wang, Z. C.; Wang, Z. N.; Yan, G.; Jiang, A. Q.; Zhu, H. L. Bioorg. Med. Chem. Lett. 2014, 24, 5279.

    9. [9]

      Coumar, M. S.; Chu, C. Y.; Lin, C. W.; Shiao, H. Y.; Ho, Y. L.; Reddy, R.; Lin, W. H.; Chen, C. H.; Peng, Y. H.; Leou, J. S.; Lien, T. W.; Huang, C. T.; Fang, M. Y.; Wu, S. H.; Wu, J. S.; Chittimalla, S. K.; Song, J. S.; Hsu, J. T.; Wu, S. Y.; Liao, C. C.; Chao, Y. S.; Hsieh, H. P. J. Med. Chem. 2010, 53, 4980.  doi: 10.1021/jm1000198

    10. [10]

      (a) Tseng, C. Magn. Reson. Chem. 1987, 25, 105.
      (b) Bramley, S. E.; Dupplin, V.; Goberdhan, D. G.; Meakins, G. D. J. Chem. Soc., Perkin Trans 1. 1987, 639.
      (c) Forlani, L.; Tocke, A. L.; Del Vecchio, E.; Lakhdar, S.; Goumont, R.; Terrier, F. J. Org. Chem. 2006, 71, 5527.

    11. [11]

      Metzger, J. V. In Chemistry of Heterocyclic Compounds, Vol. 34, Part 2, Ed.:Metzger, J. V., New York, 1979, p. 17.

    12. [12]

      Zhou, A.; Pittman, C. U. Tetrahedron Lett. 2005, 46, 3801.  doi: 10.1016/j.tetlet.2005.03.205

    13. [13]

      Yuan, M.; Liu, M.; Zhang, Y.; Yan, H.; Li, D.; Zhang, D.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1746(in Chinese).
       

    14. [14]

      (a) Wermuth, C. G. Drug Discovery Today 2006, 11, 348.
      (b) Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. J. Med. Chem. 2002, 45, 4350.
      (c) Vainio, M. J.; Puranen, J. S.; Johnson, M. S. J. Chem. Inf. Model. 2009, 49, 492.

  • 加载中
    1. [1]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    2. [2]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    5. [5]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    6. [6]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    12. [12]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    13. [13]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Yuyao GuanBaoting YuJun DingTingting SunZhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645

    16. [16]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    17. [17]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    18. [18]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    19. [19]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    20. [20]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

Metrics
  • PDF Downloads(9)
  • Abstract views(1406)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return