Citation: Jiang Kai, Cao Liang, Hao Zhifeng, Chen Meiyan, Cheng Jieluan, Li Xiao, Xiao Ping, Chen Liang, Wang Zhaoyang. Research Progress in Design, Synthesis and Application of Benzothiazole-Based Fluorescent Probes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2221-2236. doi: 10.6023/cjoc201703041 shu

Research Progress in Design, Synthesis and Application of Benzothiazole-Based Fluorescent Probes

  • Corresponding author: Hao Zhifeng, haozhifeng3377@163.com Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 24 March 2017
    Revised Date: 14 May 2017
    Available Online: 24 September 2017

    Fund Project: Project supported by the Guangzhou Science and Technology Project Scientific Special (No. 201607010251), the Applied Science and Technology Research and Development Special Foundation of Guangdong Province (No. 2016B090930004), the Undergraduates Innovation Project of South China Normal University (No. 20161415), the Natural Science Foundation of Guangdong Province (No. 2014A030313429) and the Guangdong Provincial Science and Technology Project (No. 2017A010103016)the Natural Science Foundation of Guangdong Province 2014A030313429the Applied Science and Technology Research and Development Special Foundation of Guangdong Province 2016B090930004the Guangdong Provincial Science and Technology Project 2017A010103016the Undergraduates Innovation Project of South China Normal University 20161415the Guangzhou Science and Technology Project Scientific Special 201607010251

Figures(37)

  • Benzothiazole group is of characteristic fluorescence, and each also contains two heteroatoms (N and S). Hence, benzothiazole group is always viewed as fluorophore and recognition moiety in structure of fluorescent probes, playing an essential role on provision of fluorescence signal and binding sites. Recently, utilizing these properties of benzothiazole moiety to design and synthesize better fluorescent probes has gradually become one of focuses in fluorescent detection research. Classifying benzothiazole-based fluorescent probes into four main categories according to different analytes, such as metal cations, anions, sulfur-containing compounds and other species, the design, synthesis, detecting mechanism and relevant application of these probes are reviewed. And their development tendency in the future is prospected.
  • 加载中
    1. [1]

      Rouf, A.; Tanyeli, C. Eur. J. Med. Chem. 2015, 97, 911.  doi: 10.1016/j.ejmech.2014.10.058

    2. [2]

      Adzal, O.; Akhtar, M. S.; Kumar, S.; Ali, M. R.; Jaggi, M.; Bawa, S. Eur. J. Med. Chem. 2016, 121, 318.  doi: 10.1016/j.ejmech.2016.05.038

    3. [3]

      Kamal, A.; Syed, M. A. H.; Mohammed, S. M. Expert Opin. Ther. Pat. 2015, 25, 335.  doi: 10.1517/13543776.2014.999764

    4. [4]

      Zhao, L. X.; Wang, X. Y.; Li, X. D.; Zhang, W. J.; Liu, X. H.; Zhu, Y. J.; Wang, H.-Q.; Fang, J. F. Sol. Energy Mater. Sol. Cells 2016, 157, 79.  doi: 10.1016/j.solmat.2016.05.026

    5. [5]

      Abou-Zied, O. K. RSC Adv. 2013, 3, 8747.  doi: 10.1039/c3ra40907d

    6. [6]

      Goswami, S.; Das, A. K.; Aich, K.; Manna, A. Tetrahedron Lett. 2013, 54, 4215.  doi: 10.1016/j.tetlet.2013.05.119

    7. [7]

      Guan, L.; Li, A. Y.; Song, Y. Y.; Yan, M. Q.; Gao, D. F.; Zhang, X. H.; Li, B.; Wang, L. Y. J. Org. Chem. 2016, 81, 6303.  doi: 10.1021/acs.joc.6b00928

    8. [8]

      Kartha, K. K.; Sandeep, A.; Prave Liu, D.; Ren, H. C.; Deng, L. J.; Zhang, T. ACS Appl. Mater. Interfaces 2013, 5, 4937.  doi: 10.1021/am400672y

    9. [9]

      Carrington, S. J.; Chakraborty, I.; Bernard, J. M. L.; Mascharak, P. K. Inorg. Chem. 2016, 55, 7852.  doi: 10.1021/acs.inorgchem.6b00511

    10. [10]

      Aich, K.; Goswami, S.; Das, S.; Mukhopadhyay, C. D.; Quah, C. K.; Fun, H.-K. Inorg. Chem. 2015, 54, 7309.  doi: 10.1021/acs.inorgchem.5b00784

    11. [11]

      Hou, S. H.; Qu, Z. G.; Zhong, K. L.; Bian, Y. J.; Tang, L. J. Chin. J. Org. Chem. 2016, 36, 768(in Chinese).
       

    12. [12]

      Lee, J. H.; Lee, J. H.; Kim, S. K.; Jung, J. H. Supramol. Chem. 2015, 27, 690.  doi: 10.1080/10610278.2015.1075537

    13. [13]

      Maity, S. B.; Bharadwaj, P. K. J. Lumin. 2015, 161, 76.  doi: 10.1016/j.jlumin.2014.12.064

    14. [14]

      Ju, H.; Chang, D. J.; Kim, S.; Ryu, H.; Lee, E.; Park, I.-H.; Jung, J.H.; Ikeda, M.; Habata, Y.; Lee, S. S. Inorg. Chem. 2016, 55, 7448.  doi: 10.1021/acs.inorgchem.6b00690

    15. [15]

      Sahana, S.; Mishra, G.; Sivakumar, S.; Bharadwaj, P. K. Dalton Trans. 2015, 44, 20139.  doi: 10.1039/C5DT03719K

    16. [16]

      Bae, J.-S.; Gwon, S.-Y.; Son, Y.-A.; Kim, S.-H. Dyes Pigm. 2009, 83, 324.  doi: 10.1016/j.dyepig.2009.05.010

    17. [17]

      Singh, A.; Singh, A.; Singh, N.; Jang, D. O. Tetrahedron 2016, 72, 3535.  doi: 10.1016/j.tet.2016.04.082

    18. [18]

      Erdemir, S.; Malkondu, S.; Alici, O. Color. Technol. 2015, 131, 32.  doi: 10.1111/cote.2015.131.issue-1

    19. [19]

      Mei, Q. B.; Tian, R. Q.; Shi, Y. J.; Hua, Q. F.; Chen, C.; Tong, B. H. New J. Chem. 2016, 40, 2333.  doi: 10.1039/C5NJ02259B

    20. [20]

      Razi, S. S.; Ali, R.; Gupta, R. C.; Dwivedi, S. K.; Shama, G.; Koch, B.; Misra, A. J. Photochem. Photobiol. A 2016, 324, 106.  doi: 10.1016/j.jphotochem.2016.03.015

    21. [21]

      Gu, B.; Huang, L. Y.; Su, W.; Duan, X. L.; Li, H. T.; Yao, S. Z. Anal. Chim. Acta 2017, 954, 97.  doi: 10.1016/j.aca.2016.11.044

    22. [22]

      Zhang, D.; Liu, J. H.; Yin, H. Y.; Wang, H. Q.; Li, S. F.; Wang, M.; Li, M.; Zhou, L.; Zhang, J. F. J. Fluoresc. 2016, 26, 1367.  doi: 10.1007/s10895-016-1826-z

    23. [23]

      Santra, M.; Roy, B.; Ahn, K. H. Org. Lett. 2011, 13, 3422.  doi: 10.1021/ol2011693

    24. [24]

      Luo, W. F.; Jiang, H. E.; Zhang, K. M.; Liu, W.; Tang, X. L.; Dou, W.; Ju, Z. H.; Li, Z. Q.; Liu, W. S. J. Mater. Chem. B 2015, 3, 3459.  doi: 10.1039/C5TB00203F

    25. [25]

      Song, K. C.; Kim, J. S.; Park, S. M.; Chuang, K.-C.; Ahn, S.; Chang, S.-K. Org. Lett. 2006, 8, 3413.  doi: 10.1021/ol060788b

    26. [26]

      Wang, K. N.; Feng W. J.; Wang, Y. B.; Cao, D. X.; Guan, R. F.; Yu, X. Y.; Wu, Q. Q. Inorg. Chem. Commun. 2016, 71, 102.  doi: 10.1016/j.inoche.2016.07.013

    27. [27]

      Ghosh, K.; Kar, D. J. Inclusion Phenom. Macrocyclic Chem. 2013, 77, 67.  doi: 10.1007/s10847-012-0217-6

    28. [28]

      Erdemir, S.; Tavakci, B.; Tabakci, M. Sens. Actuators, B 2016, 228, 109.  doi: 10.1016/j.snb.2016.01.017

    29. [29]

      Tang, L. J.; He, P.; Zhong, K. L.; Hou, S. H.; Bian, Y. J. Spectrochim. Acta, Part A 2016, 169, 246.  doi: 10.1016/j.saa.2016.06.045

    30. [30]

      Fan, C. L.; Luo, S. X.; Liu, R. RSC Adv. 2015, 5, 65321.  doi: 10.1039/C5RA11212E

    31. [31]

      Wen, H.; Huang, Q.; Yang, X.-F.; Li, H. Chem. Commun. 2013, 49, 4956.  doi: 10.1039/c3cc41343h

    32. [32]

      Santana, D. M.; Garcia-Bueno, R.; Garcia, G.; Piernas, M. J.; Perez, J.; Garcia, L.; Lopez-Garcia, I. Polyhedron 2013, 61, 161.  doi: 10.1016/j.poly.2013.05.047

    33. [33]

      Xu, Z. C.; Xiao, Y.; Qian, X. H.; Cui, J. N.; Cui, D. W. Org. Lett. 2005, 7, 889.  doi: 10.1021/ol0473445

    34. [34]

      Wagh, Y. B.; Kuwar, A.; Sahoo, S. K.; Gallucci, J.; Dalal, D. S. RSC Adv. 2015, 5, 45528.  doi: 10.1039/C5RA03146J

    35. [35]

      Qi, J. J.; Han, M. S.; Tung, C.-H. Bioorg. Med. Chem. Lett. 2012, 22, 1747.  doi: 10.1016/j.bmcl.2011.12.140

    36. [36]

      Arockiam, J. B.; Ayyanar, S. Sens. Actuators, B 2017, 242, 535.  doi: 10.1016/j.snb.2016.11.086

    37. [37]

      Erdemir, S.; Ozcan, K. Talanta 2016, 158, 63.  doi: 10.1016/j.talanta.2016.05.017

    38. [38]

      Liu, S.-D.; Zhang, L.-W.; Liu, X. New J. Chem. 2013, 37, 821.  doi: 10.1039/c2nj40978j

    39. [39]

      Das, S.; Aich, K.; Goswami, S.; Quah, C. K.; Fun, H.-K. New J. Chem. 2016, 40, 6414.  doi: 10.1039/C5NJ03598H

    40. [40]

      Nas, A.; Dilber, G.; Durmus, M.; Kantekin, H. Spectrochim. Acta, Part A 2015, 135, 55.  doi: 10.1016/j.saa.2014.06.135

    41. [41]

      Gogoi, A.; Samanta, S.; Das, G. Sens. Actuators, B 2014, 202, 788.  doi: 10.1016/j.snb.2014.06.012

    42. [42]

      Gogoi, A.; Das, G. RSC Adv. 2014, 4, 55689.  doi: 10.1039/C4RA10556G

    43. [43]

      Gogoi, A.; Mukherjee, S.; Ramesh, A.; Das, G. RSC Adv. 2015, 5, 63634.  doi: 10.1039/C5RA09150K

    44. [44]

      Jin, Y. Z.; Wang, S.; Zhang, Y. J.; Song, B. Sens. Actuators, B 2016, 225, 167.  doi: 10.1016/j.snb.2015.11.039

    45. [45]

      Kumar, M.; Kumar, N.; Bhalla, V. RSC Adv. 2013, 3, 1097.  doi: 10.1039/C2RA22869F

    46. [46]

      Yang, X. F.; Zhang, Y.; Li, Y. X.; Liu, X. L.; Mao, J. X.; Yuan, Y.; Cui, Y.; Sun, G. X.; Zhang, G. Y. RSC Adv. 2016, 6, 52004.  doi: 10.1039/C6RA07378F

    47. [47]

      Zhang, X. Y.; Chen, S. S.; Jin, S. H.; Lu, X. X.; Li, L. J.; Chen, X.; Shu, Q. H. Sens. Actuators, B 2016, 237, 367.  doi: 10.1016/j.snb.2016.06.115

    48. [48]

      Patil, R.; Moirangthem, A.; Butcher, R.; Singh, N.; Basu, A.; Tayade, K.; Fegade, U.; Hundiwale, D.; Kuwar, A. Dalton Trans. 2014, 43, 2895.  doi: 10.1039/C3DT52770K

    49. [49]

      Dhaka, G.; Kaur, N.; Singh, J. Supramol. Chem. 2015, 27, 654.  doi: 10.1080/10610278.2015.1068314

    50. [50]

      Zhang, H. M.; Wu, Y. C.; You, J. Y.; Cao, L.; Ding, S.; Jiang, K.; Wang, Z. Y. Chin. J. Org. Chem. 2016, 36, 2559(in Chinese).
       

    51. [51]

      Liu, S. D.; Zhang, L. W.; Zhou, P. P.; Zan, W. Y.; Yao, X. J.; Yang, J. J.; Yang, Y. RSC Adv. 2015, 5, 19983.  doi: 10.1039/C4RA13532F

    52. [52]

      Zhang, X.; Liu, J. Y. Dyes Pigm. 2016, 125, 80.  doi: 10.1016/j.dyepig.2015.10.002

    53. [53]

      Shi, H. P.; Yang, J. W.; Dong, X. Q.; Fang, L.; Dong, C.; Choi, M. M F. Synth. Met. 2013, 179, 42.  doi: 10.1016/j.synthmet.2013.07.013

    54. [54]

      Dhaka, G.; Singh, J.; Kaur, N. Inorg. Chim. Acta 2016, 450, 380.  doi: 10.1016/j.ica.2016.06.032

    55. [55]

      Erdemir, S.; Kocyigit, O. Sens. Actuators, B 2015, 221, 900.  doi: 10.1016/j.snb.2015.07.028

    56. [56]

      Wu, Y. C.; Huo, J. P.; Cao, L.; Ding, S.; Wang, L. Y.; Cao, D. R.; Wang, Z. Y. Sens. Actuators, B 2016, 237, 865.  doi: 10.1016/j.snb.2016.07.028

    57. [57]

      Wu, Y. C.; You, J. Y.; Jiang, K.; Xie, J. C.; Li, S. L.; Cao, D. R.; Wang, Z. Y. Dyes Pigm. 2017, 140, 47.  doi: 10.1016/j.dyepig.2017.01.025

    58. [58]

      Razi, S. S.; Gupta, R. C.; Ali, R.; Dwivedi, S. K.; Srivastava, P.; Misra, A. Sens. Actuators, B 2016, 236, 520.  doi: 10.1016/j.snb.2016.06.016

    59. [59]

      Hu, W.; Zeng, L. Y.; Wang, Y. Y.; Liu, Z. H.; Ye, X. X.; Li, C. Y. Analyst 2016, 141, 5450.  doi: 10.1039/C6AN00905K

    60. [60]

      Goswami, S.; Das, A. K.; Manna, A.; Maity, A. K.; Fun, H. K.; Quah, C. K.; Saha, P. Tetrahedron Lett. 2014, 55, 2633.  doi: 10.1016/j.tetlet.2014.03.003

    61. [61]

      Vidya, B.; Iniya, M.; Sivaraman, G.; Sumesh, R. V.; Cheliappa, D. Sens. Actuators, B 2017, 242, 434.  doi: 10.1016/j.snb.2016.11.076

    62. [62]

      Goswami, S.; Manna, A.; Paul, S.; Aich, K.; Das, A. K.; Chakraborty, S. Tetrahedron Lett. 2013, 54, 1785.  doi: 10.1016/j.tetlet.2012.12.092

    63. [63]

      Tang, L. J.; Zou, Y. H.; Zhong, K. L.; Bian, Y. J. RSC Adv. 2016, 6, 48351.  doi: 10.1039/C6RA07909A

    64. [64]

      Tang, Z.; Ding, X.-L.; Liu, Y.; Zhao, Z.-M.; Zhao, B.-X. RSC Adv. 2015, 5, 99664.  doi: 10.1039/C5RA20188H

    65. [65]

      Chen, S.; Hou, P.; Wang, J. X.; Song, X. Z. RSC Adv. 2012, 2, 10869.  doi: 10.1039/c2ra21471g

    66. [66]

      Wang, J. L.; Long, L. P.; Xie, D. Chin. J. Appl. Chem. 2016, 33, 841(in Chinese).  doi: 10.11944/j.issn.1000-0518.2016.07.150348

    67. [67]

      Zhang, Y. J.; Guan, L. M.; Yu, H.; Yan, Y. H.; Du, L. B.; Liu, Y.; Sun, M. T.; Huang, D. J.; Wang, S. H. Anal. Chem. 2016, 88, 4426.  doi: 10.1021/acs.analchem.6b00061

    68. [68]

      Geng, L. H.; Yang, X. F.; Zhong, Y. G.; Li, Z.; Li, H. Dyes Pigm. 2015, 120, 213.  doi: 10.1016/j.dyepig.2015.04.016

    69. [69]

      Liu, X. J.; Yang, Q. W.; Chen, W. Q.; Mo, L. N.; Chen, S.; Kang, J.; Song, X. Z. Org. Biomol. Chem. 2015, 13, 8663.  doi: 10.1039/C5OB00765H

    70. [70]

      Zhang, H. T.; Xie, Y. S.; Wang, P.; Chen, G. C.; Liu, R. C.; Lam, Y. W.; Hu, Y.; Zhu, Q.; Sun, H. Y. Talanta 2015, 135, 149.  doi: 10.1016/j.talanta.2014.12.044

    71. [71]

      Fan, F. L.; Jing, J. Q.; Chen, X. M. Chin. J. Org. Chem. 2014, 34, 2178(in Chinese).
       

    72. [72]

      Das, S. K.; Lim, C. S.; Yang, S. Y.; Han, J. H.; Cho, B. R. Chem. Commun. 2012, 48, 8395.  doi: 10.1039/c2cc33909a

    73. [73]

      Zhang, J. Y.; Guo, W. Chem. Commun. 2014, 50, 4214.  doi: 10.1039/C3CC49605H

    74. [74]

      Jiang, Y.; Wu, Q.; Chang, X.-J. Talanta 2014, 121, 122.  doi: 10.1016/j.talanta.2014.01.001

    75. [75]

      He, P.; Tang, L. J.; Zhong, K. L.; Hou, S. H.; Yan, X. M. Chin. J. Org. Chem. 2017, 37, 423(in Chinese).
       

    76. [76]

      Garcia-Beltran, O.; Santos, J. G.; Fuentealba, S.; De la Torre, P.; Pavez, P.; Mena, N.; Nunez, M. T.; Aliaga, M. E. Tetrahedron Lett. 2015, 56, 2437.  doi: 10.1016/j.tetlet.2015.03.083

    77. [77]

      Paul, S.; Goswami, S.; Das Mukhopadhyay, C. New J. Chem. 2015, 39, 8940.  doi: 10.1039/C5NJ01297J

    78. [78]

      Huang, Q.; Yang, X.-F.; Li, H. Dyes Pigm. 2013, 99, 871.  doi: 10.1016/j.dyepig.2013.07.033

    79. [79]

      Liu, Y.; Ding, Y.; Huang, J.; Zhang, X. F.; Fang, T. Y.; Zhang, Y. Y.; Zheng, X.; Yang, X. Dyes Pigm. 2017, 138, 112.  doi: 10.1016/j.dyepig.2016.11.038

    80. [80]

      Khandare, D. G.; Banerjee, M.; Gupta, R.; Kumar, N.; Ganguly, A.; Singh, D.; Chatterjee, A. RSC Adv. 2016, 6, 52790.  doi: 10.1039/C6RA07046A

    81. [81]

      Sun, W.; Li, W.-H.; Li, J.; Zhang, J.; Du, L.-P.; Li, M. Y. Tetrahedron Lett. 2012, 53, 2332.  doi: 10.1016/j.tetlet.2012.02.098

    82. [82]

      Kand, D.; Mandal, P. S.; Datar, A.; Talukdar, P. Dyes Pigm. 2014, 106, 25.  doi: 10.1016/j.dyepig.2014.02.001

    83. [83]

      Chen, X. Y.; Guo, L.; Zheng, C. G.; Gao, H. Y.; An, W. Chin. J. Appl. Chem. 2012, 29, 892(in Chinese).
       

    84. [84]

      Chen, S.; Li, H. M.; Hou, P. Tetrahedron 2017, 73, 589.  doi: 10.1016/j.tet.2016.12.049

    85. [85]

      Rothweiler, U.; Stensen, W.; Brandsdal, B. O.; Isaksson, J.; Leeson, F. A.; Engh, R. A.; Svendsen, J. S. M. J. Med. Chem. 2016, 59, 9814.  doi: 10.1021/acs.jmedchem.6b01086

    86. [86]

      Kovalska, V. B.; Losytskyy, M. Y.; Tolmachev, O. I.; Slominskii, Y. L.; Segers-Nolten, G. M. J.; Subramaniam, V.; Yarmoluk, S. M. J. Fluoresc. 2012, 22, 1441.  doi: 10.1007/s10895-012-1081-x

    87. [87]

      Ren, X. T.; Wang, F.; Lv, J.; Wei, T. W.; Zhang, W.; Wang, Y.; Chen, X. Q. Dyes Pigm. 2016, 129, 156.  doi: 10.1016/j.dyepig.2016.02.027

    88. [88]

      Zhang, D.; Chen, W.; Kang, J.-M.; Ye, Y.; Zhao, Y.-F.; Xian, M. Org. Biomol. Chem. 2014, 12, 6837.  doi: 10.1039/C4OB01031K

    89. [89]

      Liu, Z. M.; Feng, L.; Ge, G. B.; Lv, X.; Hou, J.; Cao, Y. F.; Cui, J. N.; Yang, L. Biosens. Bioelectron. 2014, 57, 30.  doi: 10.1016/j.bios.2014.01.049

    90. [90]

      Kim, T.; Kim, H.; Choi, Y.; Kim, Y. Chem. Commun. 2011, 47, 9825.  doi: 10.1039/c1cc13819g

    91. [91]

      Yang, X. F.; Guo, Y. X.; Strongin, R. M. Angew. Chem., Int. Ed. 2011, 50, 10690.  doi: 10.1002/anie.201103759

    92. [92]

      Kim, Y.; Choi, M.; Seo, S.; Manjare, S. T.; Jon, S.; Churchill, D. G. RSC Adv. 2014, 4, 64183.  doi: 10.1039/C4RA12981D

    93. [93]

      Yang, X. F.; Huang, Q.; Zhong, Y. G.; Li, Z.; Li, H.; Lowry, M.; Escobedo, J. O.; Strongin, R. M. Chem. Sci. 2014, 5, 2177.  doi: 10.1039/c4sc00308j

    94. [94]

      Goswami, S.; Das, S.; Aich, K.; Pakhira, B.; Panja, S.; Mukherjee, S. K.; Sarkart, S. Org. Lett. 2013, 15, 5412.  doi: 10.1021/ol4026759

    95. [95]

      Patil, V. S.; Padalkar, V. S.; Tathe, A. B.; Sekar, N. Dyes Pigm. 2013, 98, 507.  doi: 10.1016/j.dyepig.2013.03.019

    96. [96]

      Liu, Z. P.; Zhang, C. L.; He, W. J.; Qian, F.; Yang, X. L.; Gao, X.; Guo, Z. J. New J. Chem. 2010, 34, 656.  doi: 10.1039/b9nj00703b

    97. [97]

      Zhan, Y.; Zhao, J. Y.; Yang, P.; Ye, W. J. RSC Adv. 2016, 6, 92144.  doi: 10.1039/C6RA19791D

    98. [98]

      Chao, J. B.; Liu, Y. H.; Sun, J. Y.; Fan, L.; Zhang, Y. B.; Tong, H. B.; Li, Z. Q. Sens. Actuators, B 2015, 221, 427.  doi: 10.1016/j.snb.2015.06.087

    99. [99]

      Liu, X. D.; Xu, Y.; Sun, R.; Xu, Y. J.; Lu, J. M.; Ge, J. F. Analyst 2013, 138, 6542.  doi: 10.1039/c3an01033c

    100. [100]

      Sun, M. T.; Du, L. B.; Yu, H.; Zhang, K.; Liu, Y.; Wang, S. H. Talanta 2017, 162, 180.  doi: 10.1016/j.talanta.2016.10.012

    101. [101]

      Muthusubramanian, S.; Saha, S. K. J. Lumin. 2012, 132, 2166.  doi: 10.1016/j.jlumin.2012.03.053

    102. [102]

      Sowmiya, M.; Purkayastha, P.; Tiwari, A. K.; Jaffer, S. S.; Saha, S. K. J. Photochem. Photobiol., A 2009, 205, 186.  doi: 10.1016/j.jphotochem.2009.05.002

    103. [103]

      Tokar, V. P.; Losytskyy, M. Y.; Ohulchanskyy, T. Y.; Kryvorotenko, D. V.; Kovalska, V. B.; Balanda, A. O.; Dmytruk, I. M.; Prokopets, V. M.; Yarmoluk, S. M. J. Fluoresc. 2010, 20, 865.  doi: 10.1007/s10895-010-0630-4

    104. [104]

      Sowmiya, M.; Tiwari, A. K.; Saha, S. K. J. Colloid Interface Sci. 2010, 344, 97.  doi: 10.1016/j.jcis.2009.12.021

    105. [105]

      Gao. M.; Wang, L. C.; Chen, J. J.; Li, S. W.; Lu, G. H.; Wang, L.; Wang, Y. J.; Ren, L.; Qin, A. J.; Tang, B. Z. Chem. Eur. J. 2016, 22, 5107.  doi: 10.1002/chem.201505202

    106. [106]

      Murale, D. P.; Kim, H.; Choi, W. S.; Churchill, D. G. Org. Lett. 2013, 15, 3946.  doi: 10.1021/ol4017222

    107. [107]

      Liu, C. Y.; Cao, Z. M.; Wang, Z. H.; Jia, P.; Liu, J.; Wang, Z. K.; Han, B. J.; Huang, X.; Li, X.; Zhu, B C. Sens. Actuators, B 2015, 220, 727.  doi: 10.1016/j.snb.2015.06.013

    108. [108]

      Wu, Y. C.; You, J. Y.; Guan, L. T.; Shi, J.; Cao, L.; Wang, Z. Y. Chin. J. Org. Chem. 2015, 35, 2465(in Chinese).
       

    109. [109]

      Mora, A. K.; Murudkar, S.; Alamelu, A.; Singh, P. K.; Chattopadhyay, S.; Nath, S. Chem. Eur. J. 2016, 22, 16505.  doi: 10.1002/chem.201602981

    110. [110]

      Rajasekhar, K.; Narayanaswamy, N.; Murugan, N. A.; Kuang, G. L.; Argen, H.; Govindaraju, T. Sci. Rep. 2016, 6, 23668.  doi: 10.1038/srep23668

    111. [111]

      Liu, Q. S.; Zhang, C. L.; Wang, X. Q.; Gong, S. W.; He, W. J.; Liu, Z. P. Chem. Asian J. 2016, 11, 202.  doi: 10.1002/asia.v11.2

    112. [112]

      Cao, L.; Xiong, J. F.; Wu, Y. C.; Li, M. B.; Xie, F.; Ma, Z. H.; Wang, Z. Y. Chin. J. Org. Chem. 2016, 36, 2053(in Chinese).
       

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    9. [9]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(50)
  • Abstract views(4168)
  • HTML views(1207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return