Citation: Gao Yanjiao, Xiao Zhenhua, Liu Liangxian, Huang Peiqiang. Direct Reductive Cyanation of A 2-Pyrrolidinone Chiral Building Block Bearing An Unprotected Hydroxyl Group: A Stereoselective Synthesis of N-Methyl-2-epi-bulgecinine[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1189-1197. doi: 10.6023/cjoc201703024 shu

Direct Reductive Cyanation of A 2-Pyrrolidinone Chiral Building Block Bearing An Unprotected Hydroxyl Group: A Stereoselective Synthesis of N-Methyl-2-epi-bulgecinine

  • Corresponding author: Liu Liangxian, lxliu@xmu.edu.cn Huang Peiqiang, pqhuang@xmu.edu.cn
  • Received Date: 13 March 2017
    Revised Date: 1 April 2017

    Fund Project: by the National Natural Science Foundation of China 21332007

Figures(12)

  • The direct reductive cyanation of N-benzyl-4-benzyloxy-5-hydroxymethyl-2-pyrrolidinone (3a), a lactam bearing a free hydroxyl group, has been achieved with the LiAlH4/KCN combination. The reaction afforded 2, 5-trans-2-cyano-5-hydroxylmethyl-4-benzyloxy-pyrrolidine (5a) and its cis-diastereomer 5b in a ratio of 69:31 with a combined yield of 63%. The observed 2, 5-trans-stereoselectivity is suggested to be resulted from both stereoelectronic effect and allylic 1, 3-strain between the hydroxymethyl group at C(5) and the incoming cyanide anion on the presumed Δ-1 pyrrolinium ion intermediate. The subsequent hydrolysis of the cyano group of the diastereomeric mixture 5a/5b (trans:cis=69:31) under basic conditions afforded the corresponding 5-hydroxymethyl-4-benzyloxyproline with 2, 5-cis-diastereomer as the major diastereomer (trans:cis=10:90). This result implies that a synthetically useful epimerization at C(2) has occurred concomitantly. This unexpected result afforded a concise and highly stereoselective synthesis of 2, 5-cis-(-)-N-methyl-2-epi-bulgecinine.
  • 加载中
    1. [1]

      (a) Otto, N.; Opatz, T. Chem. Eur. J. 2014, 20, 13064. (b) Katoh, T.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima, S. Tetrahedron 1994, 50, 6221.

    2. [2]

      Husson, H. P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383.  doi: 10.1039/a900153k

    3. [3]

      Fuentes de Arriba, Á. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem., Int. Ed. 2017, 56, 3655.  doi: 10.1002/anie.201612367

    4. [4]

      Savage, S. A.; Jones, G. S.; Kolotuchin, S.; Ramrattan, S. A.; Vu, T.; Waltermire, R. E. Org. Process Res. Dev. 2009, 13, 1169.  doi: 10.1021/op900226j

    5. [5]

      Patterson, D. E.; Powers, J. D.; LeBlanc, M.; Sharkey, T.; Boehler, E.; Irdam, E.; Osterhout, M. H. Org. Process Res. Dev. 2009, 13, 900.  doi: 10.1021/op900178d

    6. [6]

      Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.  doi: 10.1039/a804370a

    7. [7]

      Xu, S.-H.; Wang, G.; Zhu, J.-J.; Shen, C.; Yang, Z.-Z.; Yu, J.; Li, Z.; Lin, T.-H.; Sun, X.; Zhang, F.-L. Eur. J. Org. Chem. 2017, 975.

    8. [8]

      (a) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947. (b) Cai, X.-H.; Xie, B. ARKIVOC 2014, part I, 205. (c) Liu, Y.-L.; Zhou, J. Synthesis 2015, 47, 1210.

    9. [9]

      (a) Ping, Y.; Ding, Q.; Peng, Y. ACS Catal. 2016, 6, 5989. (b) Libendi, S. S.; Demizu, Y.; Onomura, O. Org. Biomol. Chem. 2009, 7, 351.

    10. [10]

    11. [11]

    12. [12]

      (a) White, K. L.; Mewald, M.; Movassaghi, M. J. Org. Chem. 2015, 80, 7403. (b) Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74, 1341. (c) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254.

    13. [13]

      (a) Régnier, S.; Bechara, W. S.; Charette, A. B. J. Org. Chem. 2016, 81, 10348. (b) Cyr, P.; Régnier, S.; Bechara, W. S.; Charette, A. B. Org. Lett. 2015, 17, 3386. (c) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.

    14. [14]

      (a) Boudreault, J.; Lévesque, F.; Bélanger, G. J. Org. Chem. 2016, 81, 9247. (b) Romanens, A.; Bélanger, G. Org. Lett. 2015, 17, 322. (c) Bélanger, G.; Gauthier, L.; Ménard, F.; Nantel, M.; Barabé, F. Org. Lett. 2005, 7, 4431.

    15. [15]

      (a) Wang, J.; He, Z.-X.; Chen, X.-P.; Song, W.-Z.; Lu, P.; Wang, Y.-G. Tetrahedron 2010, 66, 1208. (b) Cui, S.-L.; Wang, J.; Wang, Y.-G. J. Am. Chem. Soc. 2008, 130, 13526.

    16. [16]

      (a) Xu, M.; Xu, K.; Wang, S. Z.; Yao, Z. J. Tetrahedron Lett. 2013, 54, 4675. (b) Xi, J.; Dong, Q.-L.; Liu, G.-S.; Wang, S.; Chen, L.; Yao, Z.-J. Synlett 2010, 1674. (c) Dong, Q.-L.; Liu, G.-S.; Zhou, H.-B.; Chen, L.; Yao, Z.-J. Tetrahedron Lett. 2008, 49, 1636.

    17. [17]

      (a) Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N. J. Am. Chem. Soc. 2016, 138, 8348. (b) Ruider, S. A.; Maulide, N. Angew. Chem., Int. Ed. 2015, 54, 13856. (c) Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.

    18. [18]

      (a) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246. (b) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696. (c) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem., Int. Ed. 2014, 53, 512.

    19. [19]

      (a) Pace, V.; de la Vega-Hernández, K.; Urban, E.; Langer, T. Org. Lett. 2016, 18, 2750. (b) Pace, V.; Pelosi, A.; Antermite, D.; Rosati, O.; Curini, M.; Holzer, W. Chem. Commun. 2016, 52, 2639. (c) Pace, V.; Castoldi, L.; Mamuye, A. D.; Holzer, W. Synthesis 2014, 46, 2897.

    20. [20]

      Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Chem. Eur. J. 2015, 21, 111.  doi: 10.1002/chem.201405256

    21. [21]

    22. [22]

      Huang, P.-Q. Synlett 2006, 1133.

    23. [23]

      Zhou, X.; Zhang, P.-Y.; Ye, J.-L.; Huang, P.-Q. C. R. Chim. 2008, 11, 5.  doi: 10.1016/j.crci.2007.02.018

    24. [24]

    25. [25]

      (a) Hart, B. P.; Rapoport, H. J. Org. Chem. 1999, 64, 2050. (b) Hart, B. P.; Verma, S. K.; Rapoport, H. J. Org. Chem. 2003, 68, 187. (c) Khalaf, J. K.; Datta, A. J. Org. Chem. 2004, 69, 387.

    26. [26]

      Shinagawa, S.; Kashara, F.; Wada, Y.; Harada, S.; Asai, M. Tetrahedron 1984, 40, 3465.  doi: 10.1016/S0040-4020(01)91497-8

    27. [27]

      (a) Show, K.; Upadhyay, P. K.; Kumar, P. Tetrahedron: Asymmetry 2011, 22, 1234. (b) Das, B.; Kumar, D. N. Synlett 2011, 1285. (c) Best, D.; Wang, C.; Weymouth-Wilson, A. C.; Clarkson, R. A.; Wilson, F. X.; Nash, R. J.; Miyauchi, S.; Kato, A.; Fleet, G. W. J. Tetrahedron: Asymmetry 2010, 21, 311. (d) Evano, G.; Couty, F.; Toumi, M. Tetrahedron Lett. 2008, 49, 1175. (e) Chandrasekhar, S.; Chandrasekhar, G.; Vijeender, K.; Sarma, G. D. Tetrahedron: Asymmetry 2006, 17, 2864. (f) Trost, B. M.; Horne, D. B.; Woltering, M. J. Chem. Eur. J. 2006, 12, 6607. (g) Chavan, S. P.; Praveen, C.; Sharma, P.; Kalkote, U. R. Tetrahedron Lett. 2005, 46, 439. (h) Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2004, 45, 421.

    28. [28]

      Hwang, Y. C.; Chu, M.; Flower, F. W. J. Org. Chem. 1985, 50, 3885.  doi: 10.1021/jo00220a040

    29. [29]

      Klumpe, M.; Dötz, K. H. Tetrahedron Lett. 1998, 39, 3683.  doi: 10.1016/S0040-4039(98)00620-0

    30. [30]

      Tanaka, K.; Sawanishi, H. Tetrahedron 1998, 54, 10029.  doi: 10.1016/S0040-4020(98)00604-8

    31. [31]

      Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry, Pergamon, New York, 1983.

    32. [32]

      Hoffmann, H. R. Chem. Rev. 1989, 89, 1841.  doi: 10.1021/cr00098a009

    33. [33]

      Davis, F. A.; Reddy, G. V.; Chen, B. C.; Kumar, A.; Haque, M. S. J. Org. Chem. 1995, 60, 6148.  doi: 10.1021/jo00124a030

    34. [34]

      Crystallographic data for 16b have been deposited at the Cambridge Crystallographic Data Center as supplementary publication number CCDC 1537394.

    35. [35]

      (a) Wang, D.; Crowe, W. E. Chin. Chem. Lett. 2015, 26, 238. (b) Ren, R.-G.; Ma, J.-Y.; Mao, Z.-Y.; Liu, Y.-W.; Wei, B.-G. Chin. Chem. Lett. 2015, 26, 1209.

    36. [36]

      Sakurai, R.; Suzuki, S.; Hashimoto, J.; Baba, M.; Itoh, O.; Uchida, A.; Hattori, T.; Miyano, S.; Yamaura, M. Org. Lett. 2004, 6, 2241.  doi: 10.1021/ol049256q

    37. [37]

      Xu, C.-P.; Xiao, Z.-H.; Zhuo, B.-Q.; Wang, Y.-H.; Huang, P.-Q. Chem. Commun. 2010, 46, 7834.  doi: 10.1039/c0cc01487g

    38. [38]

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    14. [14]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    15. [15]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

Metrics
  • PDF Downloads(5)
  • Abstract views(1423)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return