Citation: Li Wenting, Qu Wenjuan, Zhang Haili, Li Xiang, Lin Qi, Yao Hong, Zhang Youming, Wei Taibao. Development on Application of Phenazine Derivatives in Molecular Recognition and Self-assembly[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2619-2639. doi: 10.6023/cjoc201703023 shu

Development on Application of Phenazine Derivatives in Molecular Recognition and Self-assembly

  • Corresponding author: Wei Taibao, weitaibao@126.com
  • Received Date: 17 March 2017
    Revised Date: 13 May 2017
    Available Online: 2 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21662031, 21661018, 21574104, 21262032)the National Natural Science Foundation of China 21262032the National Natural Science Foundation of China 21662031the National Natural Science Foundation of China 21661018the National Natural Science Foundation of China 21574104

Figures(37)

  • A wide variety of phenazine compounds are no stranger to organic chemistry researchers, it widely exists in organic natural products together with good biological activity. The synthetic process is simple and the functionalization of molecular structure is comparatively easy of phenazine compounds with natural skeleton. These compounds with multiple sites and large conjugated system, which make it easy to form hydrogen bond, ionic bond and π-π interaction and so on. Therefore, the phenazine compounds have extensive application in supramolecular chemistry. Molecular recognition (MR) and supramolecular self-assembly (MS-A) are two important research direction of supramolecular chemistry. The advances in the research of the development on application of phenazine derivatives in MR and MS-A in recent years are highlighted. According to different type of guest, the MR is grouped into three categories, including anion recognition (AR), cationic recognition (CR) and neutral molecular recognition (NMR). According to the difference of induction factors between guest and phenazine derivatives, the MS-A is grouped into four categories, including self-assembly induced by hydrogen bonding (HBSA), self-assembly induced by accumulation (ASA), self-assembly induced by metal-ligand (M-LSA), self-assembly induced by cooperation of multiple factors (MFSA), and self-assembly induced by the outside environment (OESA).
  • 加载中
    1. [1]

      Chowdhury, G.; Sarkar, U.; Pullen, S.; Wilson, W. R.; Rajapakse, A.; Fuchsknotts, T.; Fuchs-Knotts, T.; Gates, S. Chem. Res. Toxicol. 2012, 25, 197.  doi: 10.1021/tx2004213

    2. [2]

      Saleh, O.; Bonitz, T.; Flinspach, K.; Kulik, A.; Burkard, N.; Mühlenweg, A.; Andreas, V.; Stefan, P.; Michael. L.; Bertolt, G.; Hans-Peter, F.; Lutz, H. Med. Chem. Commun. 2012, 3, 1009.  doi: 10.1039/c2md20045g

    3. [3]

      Zhi, X.; Yang, C.; Zhang, R.; Hu, Y.; Ke, Y.; Xu, H. Ind. Crops Prod. 2013, 42, 520.  doi: 10.1016/j.indcrop.2012.06.045

    4. [4]

      Marler, L.; Condasheridan, M.; Cinelli, M. A.; Morrell, A. E.; Cushman, M.; Chen, L.; Huang. K.; Van, B. R.; Pezzuto, J. M. Anticancer Res. 2010, 30, 4873.

    5. [5]

      Gerardo, P.; Marco, M.; Aida, R.; Anna, A.; Astolfo, Z.; Alessio, C.; Antonio, E. Nat. Prod. Res. 2013, 27, 956.  doi: 10.1080/14786419.2012.696257

    6. [6]

      Conda-Sheridan, M.; Udumula, V.; Endres, J. L.; Harper, C. N.; Jaramillo, L.; Zhong, H. A.; Kenneth, W. B.; Martin, C.-S. Eur. J. Med. Chem. 2016, 125, 710.

    7. [7]

      Koot, D.; Cromarty, D. Drug Delivery Transl. Res. 2015, 5, 257.  doi: 10.1007/s13346-015-0222-6

    8. [8]

      Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, R. Nat. Prod. Res. 2012, 29, 487.  doi: 10.1039/c2np00079b

    9. [9]

      Cloonan, S. M.; Elmes, R. B. P.; Erby, M. L.; Bright, S. A.; Poynton, F. E.; Nolan, D. E.; Quinn, S. J.; Gunnlaugsson, T.; Williams, D. C. J. Med. Chem. 2015, 58, 4494.  doi: 10.1021/acs.jmedchem.5b00451

    10. [10]

      Haas, D.; Blumer, C.; Keel, C. Curr. Opin. Biotechnol. 2000, 11, 290.  doi: 10.1016/S0958-1669(00)00098-7

    11. [11]

      Laursen, J.; Nielsen, J. Chem. Rev. 2004, 104, 1663.  doi: 10.1021/cr020473j

    12. [12]

      Bunz, U. H. F. Chem. Eur. J. 2009, 15, 6780.  doi: 10.1002/chem.v15:28

    13. [13]

      Bunz, U. H. F.; Engelhart, J. U.; Lindner, B. D.; Schaffroth, M. Angew. Chem., Int. Ed. 2013, 52, 3810.  doi: 10.1002/anie.v52.14

    14. [14]

      Miao, Q. Adv. Mater. 2014, 26, 5541.  doi: 10.1002/adma.201305497

    15. [15]

      Xue, H.; Tang, X. J.; Wu, L. Z.; Zhang, L. P.; Tung, C. H. J. Org. Chem. 2005, 70, 9727.  doi: 10.1021/jo051091r

    16. [16]

      Brombosz, S. M.; Zucchero, A. J.; Phillips, R. L.; Vazquez, D.; Wilson, A.; Bunz, U. H. F. Org. Lett. 2007, 9, 4519.  doi: 10.1021/ol7020302

    17. [17]

      Feng, X. J.; Tian, P. Z.; Xu, Z.; Chen, S. F.; Wong, M. S. J. Org. Chem. 2013, 78, 11318.  doi: 10.1021/jo401808c

    18. [18]

      Gill, M. R.; Cecchin, D.; Walker, M. G.; Mulla, R. S.; Battaglia, G.; Smythe, C.; Thomas, J. A. Chem. Sci. 2013, 4, 4512.  doi: 10.1039/c3sc51725j

    19. [19]

      Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. ACS Appl. Mater. Interfaces 2013, 5, 1317.  doi: 10.1021/am303152w

    20. [20]

      Edwardson, T. G.; Lau, K. L.; Bousmail, D.; Serpell, C. J.; Sleiman, H. F. Nat. Chem. 2016, 8, 162.

    21. [21]

      Bisker, G.; Dong, J.; Park, H. D.; Iverson, N. M.; Ahn, J.; Nelson, J. T.; Landry, M. P.; Kruss, S.; Strano, M. S. Nat. Commun. 2016, 7, 10241.  doi: 10.1038/ncomms10241

    22. [22]

      Rónavári, A.; Kovács, D.; Vágvölgyi, C.; Kónya, Z.; Kiricsi, M.; Pfeiffer, I. J. Basic Microbiol. 2016, 56, 557.  doi: 10.1002/jobm.v56.5

    23. [23]

      Shi, B. B.; Zhang, Y. M.; Wei, T. B.; Lin, Q.; Yao, H.; Zhang, P.; You, X. M. Sens. Actuators, B:Chem. 2014, 190, 555.  doi: 10.1016/j.snb.2013.09.043

    24. [24]

      Gao, G. Y.; Qu, W. J.; Shi, B. B.; Zhang, P.; Lin, Q.; Yao, H.; Yang, W. L.; Zhang, Y. M.; Wei, T. B. Sens. Actuators, B:Chem. 2014, 26, 39.

    25. [25]

      Li, W. T.; Wu, G. Y.; Qu, W. J.; Li, Q.; Lou, J. C.; Qu, W. J.; Yao, H.; Zhang, Y. M.; Wei, T. B. Sens. Actuators, B:Chem. 2017, 239, 671.  doi: 10.1016/j.snb.2016.08.016

    26. [26]

      Wei, T. B.; Wu, G. Y.; Shi, B. B.; Lin, Q.; Yao, H.; Zhang, Y. M. Chin. J. Chem. 2014, 32, 1238.  doi: 10.1002/cjoc.v32.12

    27. [27]

      Zhang, P.; Zhang, Y.; Lin, Q.; Yao, H.; Wei, T. Chin. J. Org. Chem. 2014, 34, 1300(in Chinese).
       

    28. [28]

      Bryant, J. J.; Zhang, Y.; Lindner, B. D.; Davey, E. A.; Appleton, L. A.; Qian, X.; Bunz, U. H. F. J. Org. Chem. 2012, 77, 7479.  doi: 10.1021/jo3012978

    29. [29]

      Li, G.; Gao, J. K.; Zhang, Q. C. Asian J. Org. Chem. 2014, 3, 203.  doi: 10.1002/ajoc.v3.2

    30. [30]

      Jardim, G. A. M.; Calado, H. D. R.; Cury, L. A.; Júnior, E. N. S. Eur. J. Org. Chem. 2015, 4, 703.

    31. [31]

      Qi, G.; Fu, C.; Chen, G.; Xu, S; Xu, W. RSC Adv. 2015, 5, 49759.  doi: 10.1039/C5RA08009F

    32. [32]

      Zhou, H.; Sun, L.; Chen, W.; Tian, G.; Chen, Y.; Li, Y.; Su, J. Tetrahedron 2016, 72, 2300.  doi: 10.1016/j.tet.2016.03.036

    33. [33]

      Zhou, H.; Mei, J.; Chen, Y. A.; Chen, C. L.; Chen, W.; Zhang, Z.; Su, J.; Chou, P. T.; Tian, H. Small 2016, 12, 6542.  doi: 10.1002/smll.v12.47

    34. [34]

      Gao, G. Y.; Qu, W. J.; Shi, B. B.; Lin, Q.; Yao, H.; Zhang, Y. M.; Chang, J.; Cai, Y.; Wei, T. B. Sens. Actuators, B:Chem. 2015, 213, 501.  doi: 10.1016/j.snb.2015.02.077

    35. [35]

      Li, W.-T.; Wu, G.-Y.; Qu, W.-J.; Li, Q.; Lou, J.-C.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Sens. Actuators, B:Chem. 2017, 239, 671.  doi: 10.1016/j.snb.2016.08.016

    36. [36]

      Shive, M. S. C.; Tanuja, B.; Bhaskar, G. Tetrahedron Lett. 2008, 49, 6646.  doi: 10.1016/j.tetlet.2008.09.033

    37. [37]

      Wang, C.; Li, G.; Zhang, Q. Tetrahedron Lett. 2013, 54, 2633.  doi: 10.1016/j.tetlet.2013.03.030

    38. [38]

      Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. ACS Appl. Mater. Interfaces 2013, 5, 1317.  doi: 10.1021/am303152w

    39. [39]

      Yang, L.; Li, X.; Qu, Y.; Qu, W.; Zhang, X.; Hang, Y.; Ågren, H.; Hua, J. Sens. Actuators, B:Chem. 2014, 203, 833.  doi: 10.1016/j.snb.2014.07.045

    40. [40]

      Li, G.; Wu, Y.; Gao, J.; Li, J.; Zhao, Y.; Zhang, Q. Chem. Asian J. 2013, 8, 1574.  doi: 10.1002/asia.v8.7

    41. [41]

      Xu, Q.; Heo, C. H.; Kim, G.; Lee, H. W.; Kim, H. M.; Yoon, J. Angew. Chem., Int. Ed. 2015, 54, 4890.  doi: 10.1002/anie.201500537

    42. [42]

      Wei, T.-B.; Li, W.-T.; Li, Q.; Su, J.-X.; Qu, W.-J.; Lin, Q.; Yao, H.; Zhang, Y-M. Tetrahedron Lett. 2016, 57, 2767  doi: 10.1016/j.tetlet.2016.05.028

    43. [43]

      Li, X.; Lin, Q.; Qu, W.; Li Q.; Chen, X.; Li, W.; Zhang, Y.; Yao, H.; Wei, T. Chin. J. Org. Chem. 2017, 37, 889(in Chinese).
       

    44. [44]

      Wei, T. B.; Li, W. T.; Li, Q.; Qu, W. J.; Li, H.; Yan, G. T.; Li, Q.; Yao, H.; Zhang, Y. M. RSC Adv. 2016, 6, 43832.  doi: 10.1039/C6RA06769G

    45. [45]

      Li, W.-T.; Qu, W.-J.; Zhu, X.; Li, Q.; Zhang, H.-L.; Yao, H.; Lin, Q.; Zhang, Y.-M.; Wei, T.-B. Sci. China, Chem. 2017, 60, 754.  doi: 10.1007/s11426-016-0438-4

    46. [46]

      Zhang, H. L; Wei, T. B.; Li, W. T.; Qu, W. J.; Leng, Y. L.; Zhang, J. H.; Lin, Q.; Zhang, Y. M.; Yao, H. Sens. Actuators, B:Chem. 2017, 239, 671.  doi: 10.1016/j.snb.2016.08.016

    47. [47]

      Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y.; Nagano, T. J. Am. Chem. Soc. 2010, 132, 15846.  doi: 10.1021/ja105937q

    48. [48]

      Yang, L.; Qu, W.; Zhang, X.; Hang, Y.; Hua, J. Analyst 2015, 140, 182.  doi: 10.1039/C4AN01732C

    49. [49]

      Liu, X.; Weinert, Z. J.; Sharafi, M.; Liao, C.; Li, J.; Schneebeli, S. T. Angew. Chem., Int. Ed. 2015, 54, 12772.  doi: 10.1002/anie.201506793

    50. [50]

      Qu, Y.; Zhang, X.; Wang, L.; Yang, H.; Yang, L.; Cao, J.; Hua, J. RSC Adv. 2016, 6, 22389.  doi: 10.1039/C5RA26784F

    51. [51]

      Gu, P.-Y.; Wang, C.; Nie, L.; Long, G.; Zhang, Q. RSC Adv. 2016, 6, 37929.  doi: 10.1039/C6RA08547D

    52. [52]

      Liu, Y.; Ye, M.; Ge, Q.; Qu, X.; Guo, Q.; Hu, X.; Sun, Q. Anal. Chem. 2016, 88, 1768.  doi: 10.1021/acs.analchem.5b04043

    53. [53]

      Wang, L.; Liu, S.; Hao, C.; Zhang, X.; Wang, C.; He, Y. Sens. Actuators, B:Chem. 2016, 229, 145.  doi: 10.1016/j.snb.2016.01.117

    54. [54]

      Zhang, S. G. Biotechnol. Adv. 2002, 20, 321.  doi: 10.1016/S0734-9750(02)00026-5

    55. [55]

      Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Chem. Rev. 2015, 115, 6114.

    56. [56]

      Kazuma, G.; Tetsuo, A.; Hiroyuki, I. Acta Crystallogr. 2007, 63, 17.  doi: 10.1107/S0108768106039462

    57. [57]

      Tu, L.; Hsin, R. C.; Hong, Y. L.; Hung, L. L. Cryst. Growth Des. 2012, 12, 5897.  doi: 10.1021/cg300763t

    58. [58]

      Tran, N. T.; Wilson, S. O.; Franz, A. K. Chem. Commun. 2014, 50, 3738.  doi: 10.1039/C4CC00672K

    59. [59]

      Metz, A. E.; Podlesny, E. E.; Carroll, P. J.; Klinghoffer, A. N.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136, 10601.  doi: 10.1021/ja506137j

    60. [60]

      Nayak, A.; Pedireddi, V. R. Cryst. Growth Des. 2016, 16, 5966.  doi: 10.1021/acs.cgd.6b01011

    61. [61]

      Ritter, K.; Pehlken, C.; Sorsche, D.; Rau, S. Dalton Trans. 2015, 44, 8889.  doi: 10.1039/C5DT00214A

    62. [62]

      Hugo, V.; Macarena, P.; Eduardo, P. Inorg. Chem. 2015, 54, 3654.  doi: 10.1021/acs.inorgchem.5b00250

    63. [63]

      Mohammad, O. B.; Jeffery, D. M.; Haoran, S. Cryst. Growth Des. 2015, 15, 2235.  doi: 10.1021/cg501894u

    64. [64]

      Shuster, V.; Gambarotta, S.; Nikiforov, G. B.; Budzelaar, P. H. M. Organometallics 2013, 32, 2329.  doi: 10.1021/om3012097

    65. [65]

      Bindewald, E.; Lorenz, R.; Hübner, O.; Brox, D.; Herten, D.-P.; Kaifer, E.; Himmel, H.-J. Dalton Trans. 2015, 44, 3467.  doi: 10.1039/C4DT03572K

    66. [66]

      Wei, T.; Zhang, H.; Li, W.; Qu, W.; Su, J.; Lin, Q.; Zhang, Y.; Yao, H. Chin. J. Chem. 2017, 35, 1311.  doi: 10.1002/cjoc.v35.8

    67. [67]

      Gao, Y.; Li, H.; Yin, S.; Liu, G.; Cao, L.; Li, Y.; Wang, X.; Ou, Z.; Wang, X. New J. Chem. 2014, 38, 5647.  doi: 10.1039/C4NJ01083C

    68. [68]

      Liu, Y.; Zhong, K.; Li, Z.; Wang, Y.; Chen, T.; Lee, M.; Jin, L. Y. Polym. Chem. 2015, 6, 7395.  doi: 10.1039/C5PY01056J

    69. [69]

      Liang, G.; Wu, G.; Wang, H.; Su, J.; Li, H.; Lin, Q.; Zhang, Y.; Wei, T. J. Inclusion Phenom. Macrocyclic Chem. 2016, 86, 173.  doi: 10.1007/s10847-016-0662-8

    70. [70]

      Lee, D. C.; Brownell, L. V.; Jang, K.; Han, S. J.; Robins, K. A. Phys. Chem. Chem. Phys. 2015, 17, 2457.  doi: 10.1039/C4CP05090H

    71. [71]

      Jiang, K.; Ma, S.; Bi, H.; Chen, D.; Han, X. J. Mater. Chem. A 2014, 2, 19208.  doi: 10.1039/C4TA04269G

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    5. [5]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    9. [9]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    12. [12]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    13. [13]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(22)
  • Abstract views(2646)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return