Citation: Zhu Longzhi, Cao Xin, Li You, Liu Ting, Wang Xie, Qiu Renhua, Yin ShuangFeng. Recent Advances on the C-H Bond Functionalization on C(5) Position of 8-Aminoquinolines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1613-1628. doi: 10.6023/cjoc201703020 shu

Recent Advances on the C-H Bond Functionalization on C(5) Position of 8-Aminoquinolines

  • Corresponding author: Qiu Renhua, renhuaqiu@hnu.edu.cn Yin ShuangFeng, sf_yin@hnu.edu.cn
  • Received Date: 9 March 2017
    Revised Date: 17 April 2017
    Available Online: 10 July 2017

    Fund Project: the Huann Youth Talent 2016RS3023the National Natural Science Foundation of China 21676076Project supported by the National Natural Science Foundation of China (Nos. 21373003, 21676076), the Natural Science Foundation of Hunan Province (No. 2016JJ3034) and the Huann Youth Talent (No. 2016RS3023)the Natural Science Foundation of Hunan Province 2016JJ3034the National Natural Science Foundation of China 21373003

Figures(16)

  • 8-Aminoquinolines are important nitrogen-containing heterocycles widely existing in the natural products, bio-active molecules and agrochemicals. It has been developed as significant bidentate directing groups or as ligand auxiliary in various kinds of organic reactions, especially in the area of C-H bond functionalization. Therefore, the synthesis of such motifs, especially those with substituted quinolines is of great significance. This review focuses on the remote C-H bond functionalizaitons of 8-aminoquinolines on the C(5) position, including the advantages and disadvantages as well as an outlook in this field.
  • 加载中
    1. [1]

      (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
      (b) Kaur, K.; Jain, M.; Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010, 45, 3245.
      (c) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications, 3rd, John Wiley & Sons, New York, 2013.
      (d) Colomb, J.; Becker, G.; Fieux, S.; Zimmer, L.; Billard, T. J. Med. Chem. 2014, 57, 3884.
      (e) Tekwani, B. L.; Walker, L. A. Curr. Opin. Infect. Dis. 2006, 19, 623.

    2. [2]

      (a) Fahrni, C. J.; O'Halloran, T. V. J. Am. Chem. Soc. 1999, 121, 11448.
      (b) Huang, J.; Xu, Y.; Qian, X. Dalton. Trans. 2014, 43, 5983.
      (c) McQuade, L. E.; Lippard, S. J. Inorg. Chem. 2010, 49, 7464.
      (d) Zhu, S. S.; Lin, W. Y.; Yuan, L. Dyes Pigm. 2013, 99, 465.

    3. [3]

      Peters, W. J. R. Soc. Med. 1999, 92, 345.  doi: 10.1177/014107689909200705

    4. [4]

      Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.  doi: 10.1021/ja054549f

    5. [5]

    6. [6]

      (a) Qiu, R.; Reddy, V. P.; Iwasaki, T.; Kambe, N. J. Org. Chem. 2015, 80, 367.
      (b) Zhu, L.; Cao, X.; Qiu, R.; Iwasaki, T.; Reddy, V. P.; Xu, X.; Yin, S.-F.; Kambe, N. RSC Adv. 2015, 5, 39358.
      (c) Reddy, V. P.; Qiu, R. H.; Iwasaki, T.; Kambe, N. Org. Lett. 2013, 15, 1290.
      (d) Su, L.; Dong, J.; Liu, L.; Sun, M.; Qiu, R.; Zhou, Y.; Yin, S.-F. J. Am. Chem. Soc. 2016, 138, 12348.

    7. [7]

      (a) Wang, X.; Qiu, R.; Yan, C.; Reddy, V. P.; Zhu, L.; Xu, X.; Yin, S.-F. Org. Lett. 2015, 17, 1970.
      (b) Wang, X.; Zhu, L.; Chen, S.; Xu, X.; Au, C. T.; Qiu, R. Org. Lett. 2015, 17, 5228.
      (c) Zhu, L.; Qiu, R.; Cao, X.; Xiao, S.; Xu, X.; Au, C. T.; Yin, S.-F. Org. Lett. 2015, 17, 5528.
      (d) Reddy, V. P.; Qiu, R.; Iwasaki, T.; Kambe, N. Org. Biomol. Chem. 2015, 13, 6803.

    8. [8]

      (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. d. C.; Soriano, E. Chem. Rev. 2009, 109, 2652.
      (b) Sudharshan, M.; Zehra, T.; Sanjay, B. Curr. Org. Chem. 2008, 12, 1116.
      (c) Reitsema, R. H. Chem. Rev. 1948, 43, 43.
      (d) Bergstrom, F. W. Chem. Rev. 1944, 35, 153.
      (e) Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, C. M. M. Curr. Org. Chem. 2005, 9, 141.
      (f) Kong, L. K.; Zhou, Y. Y.; Huang, H.; Yang, Y.; Liu, Y. Y.; Li, Y. Z. J. Org. Chem. 2015, 80, 1275.
      (g) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
      (h) Horn, J.; Marsden, S. P.; Nelson, A.; House, D.; Weingarten, G. G. Org. Lett. 2008, 10, 4117.
      (i) Shaabani, A.; Rahmati, A.; Badri, Z. Catal. Commun. 2008, 9, 13.
      (j) Manske, R. Chem. Rev. 1942, 30, 113.
      (k) Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.; Panchal, S. N.; Patel, H. D. RSC Adv. 2014, 4, 24463.

    9. [9]

      (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
      (b) Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K. M.; Yu, J.-Q. Nature 2015, 519, 334.
      (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (d) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
      (e) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.
      (f) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2011, 45, 788.
      (g) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
      (h) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.
      (i) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
      (j) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.

    10. [10]

      Xu, Y. M. S. Thesis, Henan Normal University, Xinxiang, 2015.

    11. [11]

      (a) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926.
      (b) Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070.
      (c) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.

    12. [12]

      Wasa, M.; Worrell, B. T.; Yu, J. Q. Angew. Chem., Int. Ed. 2010, 49, 1275.  doi: 10.1002/anie.200906104

    13. [13]

      (a) Tsai, C.-C.; Shih, W.-C.; Fang, C.-H.; Li, C.-Y.; Ong, T.-G.; Yap, G. P. J. Am. Chem. Soc. 2010, 132, 11887.
      (b) Chen, Q.; du Jourdin, X. M.; Knochel, P. J. Am. Chem. Soc. 2013, 135, 4958.

    14. [14]

      (a) Kwak, J.; Kim, M.; Chang, S. J. Am. Chem. Soc. 2011, 133, 3780.
      (b) Boudet, N.; Lachs, J. R.; Knochel, P. Org. Lett. 2007, 9, 5525.

    15. [15]

      (a) Iwai, T.; Sawamura, M. ACS Catal. 2015, 5, 5031.
      (b) Stephens, D. E.; Larionov, O. V. Tetrahedron 2015, 71, 8683.

    16. [16]

    17. [17]

      Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.  doi: 10.1021/ja4026424

    18. [18]

      Guo, H.; Chen, M.; Jiang, P.; Chen, J.; Pan, L.; Wang, M.; Xie, C.; Zhang, Y. Tetrahedron 2015, 71, 70.  doi: 10.1016/j.tet.2014.11.037

    19. [19]

      Xu, J.; Zhu, X.; Zhou, G.; Ying, B.; Ye, P.; Su, L.; Shen, C.; Zhang, P. Org. Biomol. Chem. 2016, 14, 3016.  doi: 10.1039/C6OB00169F

    20. [20]

      Liu, X.-X.; Wu, Z.-Y.; Luo, X.-L.; He, Y.-Q.; Zhou, X.-Q.; Fan, Y.-X.; Huang, G.-S. RSC Adv. 2016, 6, 71485.  doi: 10.1039/C6RA14863H

    21. [21]

      Rao, N. S.; Reddy, G. M.; Sridhar, B.; Sarma, M. H. Eur. J. Org. Chem. 2017, 2017, 438.  doi: 10.1002/ejoc.201601151

    22. [22]

      Ding, J.; Li, W.; Ye, K.; Li, J. ChemistrySelect 2016, 1, 5874.  doi: 10.1002/slct.201601108

    23. [23]

      He, X.; Xu, Y.-Z.; Kong, L.-X.; Wu, H.-H.; Ji, D.-Z.; Wang, Z.-B.; Xu, Y.-G.; Zhu, Q.-H. Org. Chem. Front. 2017, 4, 1046.  doi: 10.1039/C6QO00644B

    24. [24]

      Su, Q.; Wu, Q.; Wu, C.; Zhou, H.; He, M.; Li, P.; Mu, Y. Synlett 2016, 27, 868.  doi: 10.1055/s-00000083

    25. [25]

      Sahoo, H.; Ramakrishna, I.; Baidya, M. ChemistrySelect 2016, 1, 1949.  doi: 10.1002/slct.201600532

    26. [26]

      Khan, B.; Kant, R.; Koley, D. Adv. Synth. Catal. 2016, 358, 2352.  doi: 10.1002/adsc.v358.14

    27. [27]

      Wang, Y.; Wang, Y.; Jiang, K.; Zhang, Q.; Li, D. Org. Biomol. Chem. 2016, 14, 10180.  doi: 10.1039/C6OB02079H

    28. [28]

      Sen, C.; Sahoo, T.; Ghosh, S. C. ChemistrySelect 2017, 2, 2745.  doi: 10.1002/slct.201700380

    29. [29]

      Chen, J.; Wang, T.; Liu, Y.; Wang, T.; Lin, A.; Yao, H.; Xu, J. Org. Chem. Front. 2017, 4, 622.  doi: 10.1039/C6QO00765A

    30. [30]

      Huang, C.-B.; Chen, L.-J.; Huang, J.; Xu, L. RSC Adv. 2014, 4, 19538.  doi: 10.1039/c4ra02373k

    31. [31]

      Cong, X.; Zeng, X. Org. Lett. 2014, 16, 3716.  doi: 10.1021/ol501534z

    32. [32]

      Reddy, M. D.; Fronczek, F. R.; Watkins, E. B. Org. Lett. 2016, 18, 5620.  doi: 10.1021/acs.orglett.6b02848

    33. [33]

      Du, C.; Li, P.-X.; Zhu, X.; Suo, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2016, 55, 13571.  doi: 10.1002/anie.201607719

    34. [34]

      Zhang, J.; Wang, Z.; Ren, C.; Niu, J.; Song, M. Chin. J. Org. Chem. 2017, 37, 1237(in Chinese). 

    35. [35]

      Cui, M.; Liu, J.-H.; Lu, X.-Y.; Lu, X.; Zhang, Z.-Q.; Xiao, B.; Fu, Y. Tetrahedron Lett. 2017, 58, 1912.  doi: 10.1016/j.tetlet.2017.02.090

    36. [36]

      Sahoo, H.; Reddy, M. K.; Ramakrishna, I.; Baidya, M. Chem. Eur. J. 2016, 22, 1592.  doi: 10.1002/chem.201504207

    37. [37]

      Wu, Z.; He, Y.; Ma, C.; Zhou, X.; Liu, X.; Li, Y.; Hu, T.; Wen, P.; Huang, G. Asian J. Org. Chem. 2016, 5, 724.  doi: 10.1002/ajoc.v5.6

    38. [38]

      Kuninobu, Y.; Nishi, M.; Kanai, M. Org. Biomol. Chem. 2016, 14, 8092.  doi: 10.1039/C6OB01325B

    39. [39]

      Jin, L.-K.; Lu, G.-P.; Cai, C. Org. Chem. Front. 2016, 3, 1309.  doi: 10.1039/C6QO00369A

    40. [40]

      Xu, J.; Qiao, L.; Ying, B.; Zhu, X.; Shen, C.; Zhang, P. Org. Chem. Front. 2017, 4, 1116.  doi: 10.1039/C6QO00655H

    41. [41]

      Shen, C.; Xu, J.; Ying, B.; Zhang, P. ChemCatChem 2016, 8, 3560.  doi: 10.1002/cctc.201601068

    42. [42]

      Chen, H.; Li, P. H.; Wang, M.; Wang, L. Org. Lett. 2016, 18, 4794.  doi: 10.1021/acs.orglett.6b02166

    43. [43]

      Sahoo, H.; Mandal, A.; Selvakumar, J.; Baidya, M. Eur. J. Org. Chem. 2016, 2016, 4321.  doi: 10.1002/ejoc.v2016.25

    44. [44]

      Chen, J.; Wang, T.; Wang, T.; Lin, A.; Yao, H.; Xu, J. Org. Chem. Front. 2016, 4, 130.

    45. [45]

      Liang, H. W.; Jiang, K.; Ding, W.; Yuan, Y.; Shuai, L.; Chen, Y. C.; Wei, Y. Chem. Commun. 2015, 51, 16928.  doi: 10.1039/C5CC05527J

    46. [46]

      Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Dong, Y.; Wu, Y.; Kong, X.; Jiang, L.; Wu, Y. Org. Lett. 2015, 17, 6086.  doi: 10.1021/acs.orglett.5b03114

    47. [47]

      Fu, R.; Lu, T.; Chen, F.-W. Acta Phys.-Chim. Sin. 2014, 30, 628.

    48. [48]

      Xu, J.; Shen, C.; Zhu, X.; Zhang, P.; Ajitha, M. J.; Huang, K. W.; An, Z.; Liu, X. Chem. Asian J. 2016, 11, 882.  doi: 10.1002/asia.v11.6

    49. [49]

      Li, J.-M.; Weng, J.; Lu, G.; Chan, A. S. C. Tetrahedron Lett. 2016, 57, 2121.  doi: 10.1016/j.tetlet.2016.04.011

    50. [50]

      Wei, J.; Jiang, J.; Xiao, X.; Lin, D.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. J. Org. Chem. 2016, 81, 946.  doi: 10.1021/acs.joc.5b02509

    51. [51]

      Liang, S.; Manolikakes, G. Adv. Synth. Catal. 2016, 358, 2371.  doi: 10.1002/adsc.201600388

    52. [52]

      Xia, C.; Wang, K.; Xu, J.; Wei, Z.; Shen, C.; Duan, G.; Zhu, Q.; Zhang, P. RSC Adv. 2016, 6, 37173.  doi: 10.1039/C6RA04013F

    53. [53]

      Ji, D.; He, X.; Xu, Y.; Xu, Z.; Bian, Y.; Liu, W.; Zhu, Q.; Xu, Y. Org. Lett. 2016, 18, 4478.  doi: 10.1021/acs.orglett.6b01980

    54. [54]

      Wang, Y.; Wang, Y.; Guo, Z.; Zhang, Q.; Li, D. Asian J. Org. Chem. 2016, 5, 1438.  doi: 10.1002/ajoc.201600389

    55. [55]

      Yin, Y.; Xie, J.; Huang, F.-Q.; Qi, L.-W.; Zhang, B. Adv. Synth. Catal. 2017, 359, 1037.  doi: 10.1002/adsc.201600947

    56. [56]

      Dou, Y.; Xie, Z.; Sun, Z.; Fang, H.; Shen, C.; Zhang, P.; Zhu, Q. ChemCatChem 2016, 8, 3570.  doi: 10.1002/cctc.201600874

    57. [57]

      Whiteoak, C. J.; Planas, O.; Company, A.; Ribas, X. Adv. Synth. Catal. 2016, 358, 1679.  doi: 10.1002/adsc.v358.10

    58. [58]

      Khan, B.; Khan, A. A.; Bora, D.; Verma, D.; Koley, D. ChemistrySelect 2017, 2, 260.  doi: 10.1002/slct.201601917

    59. [59]

      Zhu, X.; Qiao, L.; Ye, P.; Ying, B.; Xu, J.; Shen, C.; Zhang, P. RSC Adv. 2016, 6, 89979.  doi: 10.1039/C6RA19583K

    60. [60]

      He, Y.; Zhao, N.; Qiu, L.; Zhang, X.; Fan, X. Org. Lett. 2016, 18, 6054.  doi: 10.1021/acs.orglett.6b02998

    61. [61]

      Sadhu, P.; Alla, S. K.; Punniyamurthy, T. J. Org. Chem. 2015, 80, 8245.  doi: 10.1021/acs.joc.5b01021

    62. [62]

      Xia, C.; Wang, K.; Xu, J.; Shen, C.; Sun, D.; Li, H.; Wang, G.; Zhang, P. Org. Biomol. Chem. 2017, 15, 531.  doi: 10.1039/C6OB02375D

    63. [63]

      Wang, H.; Niu, Y.; Zhang, G.; Ye, X.-S. Tetrahedron Lett. 2016, 57, 4544.  doi: 10.1016/j.tetlet.2016.08.086

    64. [64]

      Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187.  doi: 10.1039/c3sc51993g

    65. [65]

      Wang, C.; Yang, Y.; Qin, D.; He, Z.; You, J. J. Org. Chem. 2015, 80, 8424.  doi: 10.1021/acs.joc.5b01302

  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    3. [3]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    4. [4]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    9. [9]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    12. [12]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    13. [13]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    17. [17]

      . . University Chemistry, 2024, 39(8): 0-0.

    18. [18]

      . 第41卷第8期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(8): -.

    19. [19]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(43)
  • Abstract views(4167)
  • HTML views(894)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return