Citation: Yu Jiangfan, Feng Ruokun, Yang Zhen. Synthetic Studies toward Neopeltolide:A Potent Anti-cancer Natural Product[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2526-2543. doi: 10.6023/cjoc201703017 shu

Synthetic Studies toward Neopeltolide:A Potent Anti-cancer Natural Product

  • Corresponding author: Yang Zhen, yangzhen09@usx.edu.cn
  • Received Date: 8 March 2017
    Revised Date: 7 June 2017
    Available Online: 16 October 2017

    Fund Project: the National Natural Science Foundation of China 21302129Project supported by the National Natural Science Foundation of China (No. 21302129) and the Natural Science Foundation of Zhejiang Province (No. LQ13B020002).the Natural Science Foundation of Zhejiang Province LQ13B020002

Figures(27)

  • (+)-Neopeltolide was isolated from a deep-water sponge of the family neopeltidae. Due to its attractive novel structure and highly potent anticancer activity, more than twenty total and formal syntheses have been reported in last decade. Herein, the synthetic studies toward the total and formal syntheses of neopeltolide are reviewed according to the synthetic strategies toward the macrolactone core.
  • 加载中
    1. [1]

      Wright, A. E.; Botelho, J. C.; Guzman, E.; Harmody, D.; Linley, P.; McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. Nat. Prod. 2007, 70, 412.  doi: 10.1021/np060597h

    2. [2]

      For total syntheses of leucascandrolide A, see:
      (a) Hornberger, K. R.; Hamblett, C. L.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 12894.
      (b) Wang, Y.; Janjic, J. S.; Kozmin, A. J. Am. Chem. Soc. 2002, 124, 13670.
      (c) Fettes, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2002, 41, 4098.
      (d) Paterson, I.; Tudge, M. Angew. Chem., Int. Ed. 2003, 42, 343.
      (e) Fettes, A.; Carreira, E. M. J. Org. Chem. 2003, 68, 9274.
      (f) Paterson, I.; Tudge, M. Tetrahedron 2003, 59, 6833.
      (g) Wang, Y.; Janjic, J. S.; Kozmin, A. Pure Appl. Chem. 2005, 77, 1161.
      (h) Su, Q.; Dakin, L. A.; Panek, J. S. J. Org. Chem. 2007, 72, 2.
      (ⅰ) Van Orden, L. J.; Patterson, B. D.; Rychnovsky, S. D. J. Org. Chem. 2007, 72, 5784. For syntheses of the leucascandrolide A macrolide, see:
      (j) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420.
      (k) Wipf, P.; Reeves, J. T. Chem. Commun. 2002, 2066.
      (l) Williams, D. R.; Plummer, S.; Patnaik, V. S. Angew. Chem., Int. Ed. 2003, 42, 3934.
      (m) Williams, D. R.; Patnaik, V. S.; Plummer, S. Org. Lett. 2003, 5, 5035.
      (n) Crimmins, M. T.; Siliphaivanh, P. Org. Lett. 2003, 5, 4641.
      (o) FerriM, L.; Reymond, S.; Capdevielle, P.; Cossy, J. Org. Lett. 2007, 9, 2461. Other reports of leucascandrolide A fragments include:
      (p) Crimmins, M. T.; Carroll, C. A.; King, B. W. Org. Lett. 2000, 2, 597.
      (q) Kozmin, S. A. Org. Lett. 2001, 3, 755.
      (r) Dakin, L. A.; Langille, N. F.; Panek, J. S. J. Org. Chem. 2002, 67, 6812.
      (s) Wipf, P.; Graham, T. H. J. Org. Chem. 2001, 66, 3242.

    3. [3]

      (a) Ulanovskaya, O. A.; Janjic, J.; Suzuki, M.; Sabharwal, S. S.; Schumacker, P. T.; Kron, S. J.; Kozmin, S. A. Nat. Chem. Biol. 2008, 4, 418.
      (b) Vintonyak, V. V.; Kunze, F. S.; Maier, M. E. Chem.-Eur. J. 2008, 14, 11132.
      (c) Custar, D. W.; Zabawa, T. P.; Hines, J.; Crews, C. M.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 12406.
      (d) Fuwa, H.; Saito, A.; Naito, S.; Konoki, K.; Yotsu-Yamashita, M.; Sasaki, M. Chem.-Eur. J. 2009, 15, 12807.
      (e) Cui, Y.; Tu, W.; Floreancig, P. E. Tetrahedron 2010, 66, 4867.
      (f) Cui, Y.; Balachandran, R.; Day, B. W.; Floreancig, P. E. J. Org. Chem. 2012, 77, 2225.
      (g) Fuwa, H.; KawakamiA, K.; Noto, K.; Muto, T.; Suga, Y.; Konoki, K.; Yotsu-Yamashita, M.; Sasaki, M. Chem.-Eur. J. 2013, 19, 8100.
      (h) D'Ambrosio, M.; Guerriero, A.; Debitus, C.; Pietra, F. Helv. Chim. Acta 1996, 79, 51.
      (ⅰ) Fuwa, H.; Sato, M.; Sasaki, M. Mar. Drugs 2014, 12, 5576.

    4. [4]

      (a) Youngsaye, W.; Lowe, J. T.; Pohlki, F.; Ralifo, P.; Panek, J. S. Angew. Chem., Int. Ed. 2007, 46, 9211.
      (b) Custar, D. W.; Zabawa, T. P.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 804.
      (c) Woo, S. K.; Kwon, M. S.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 3242.
      (d) Paterson, I.; Miller, N. A. Chem. Commun. 2008, 4708.
      (e) Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M. Angew. Chem., Int. Ed. 2008, 47, 4737.
      (f) Guinchard, X.; Roulland, E. Org. Lett. 2009, 11, 4700.
      (g) Ghosh, A. K.; Shurrush, K. A.; Dawson, Z. L. Org. Biomol. Chem. 2013, 11, 7768.
      (h) Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2015, 54, 215.

    5. [5]

      (a) Vintonyak, V. V.; Maier, M. E.Org. Lett. 2008, 10, 1239.
      (b) Kartika, R.; Gruffi, T. R.; Taylor, R. E. Org. Lett. 2008, 10, 5047.
      (c) Tu, W.; Floreancig, P. E. Angew. Chem., Int. Ed. 2009, 48, 4567.
      (d) Kim, H.; Park, Y.; Hong, J. Angew. Chem., Int. Ed. 2009, 48, 7577.
      (e) Yadav, J. S.; Krishana, G. G.; Kumar, S. N. Tetrahedron 2010, 66, 480.
      (f) Fuwa, H.; Saito, A.; Sasaki, M. Angew. Chem., Int. Ed. 2010, 49, 3041.
      (g) Martinez-Solorio, D.; Jennings, M. P. J. Org. Chem. 2010, 75, 4095.
      (h) Yang, Z.; Zhang, B.; Zhao, G.; Yang, J.; Xie, X.; She, X. Org. Lett. 2011, 13, 5916.
      (ⅰ) Raghavan, S.; Samanta, P. K. Org. Lett. 2012, 14, 2346.
      (j) Sharma, G. V. M.; Reddy, S. V.; Ramakrishna, K. V. S. Org. Biomol. Chem. 2012, 10, 3689.
      (k) Athe, S.; Chandrasekhar, B.; Roy, S.; Pradhan, T. K.; Ghosh, S. J. Org. Chem. 2012, 77, 9840.

    6. [6]

      (a) Gallon, J.; Reymond, S.; Cossy, J. C. R. Chim. 2008, 1463.
      (b) Bai, Y.; Dai, M. J. Curr. Org. Chem. 2015, 19, 871.
      (c) Fuwa, H. Mar. Drugs, 2016, 14, 65.

    7. [7]

      Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.  doi: 10.1021/ja00173a071

    8. [8]

      (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
      (b) Huang, S. L.; Omura, K.; Swern, D.; Further, D. Synthesis 1978, 297.

    9. [9]

      (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett. 1996, 37, 8585.
      (b) Evans, D. A.; Coleman, P. J. J. Org. Chem. 1997, 62, 788.

    10. [10]

      Chen, K. M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.  doi: 10.1016/S0040-4039(00)95673-9

    11. [11]

      Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008.  doi: 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4

    12. [12]

      Zakharkin, L. I.; Khorlina, I. M. Tetrahedron Lett. 1962, 3, 619.  doi: 10.1016/S0040-4039(00)70918-X

    13. [13]

      Keck, G. E.; Boden, E. P.; Mabury, S. A. J. Org. Chem. 1985, 50, 709.  doi: 10.1021/jo00205a036

    14. [14]

      Arrayás, R. G.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 7674.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      (a) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
      (b) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091.

    16. [16]

      (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
      (b) Yeung, K.-S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
      (c) Parenty, A.; Moreau, X.; Campagne, J. M. Chem. Rev. 2006, 106, 911.

    17. [17]

      Tamao, K.; Maeda, K.; Tanaka, T.; Ito, Y. Tetrahedron Lett. 1988, 29, 6955.  doi: 10.1016/S0040-4039(00)88485-3

    18. [18]

      (a) Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706.
      (b) Neveux, M.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Perkin Trans. 11991, 1197.

    19. [19]

      Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1981, 105, 2092.

    20. [20]

      Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900.  doi: 10.1002/anie.200200556

    21. [21]

      Duprat de Paule, S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Eur. J. Org. Chem. 2003, 1931.

    22. [22]

      Lee, K.-C.; Lin, M.-J.; Loh, T.-P. Chem. Commun. 2004, 2456.

    23. [23]

      Vugts, D. J.; Veum, L.; al-Mafraji, K.; Lemmens, R.; Schmitz, R. F.; de Kanter, F. J. J.; Groen, M. B.; Hanefeld, U.; Orru, R. V. A. Eur. J. Org. Chem. 2006, 1672.

    24. [24]

      Brown, H. C.; Jadhav, P. K.; Perumal, P. T. Tetrahedron Lett. 1984, 25, 5111.  doi: 10.1016/S0040-4039(01)81537-9

    25. [25]

      Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32.  doi: 10.1021/ja043834g

    26. [26]

      Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1999, 38, 2398.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Ito, H.; Inoue, T.; Iguchi, K. Org. Lett. 2008, 10, 3873.  doi: 10.1021/ol801395q

    28. [28]

      Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432.  doi: 10.1021/jo00354a003

    29. [29]

      Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217.  doi: 10.1021/ol0400342

    30. [30]

      Masamune, S.; Roush, W. R.; Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.  doi: 10.1016/S0040-4039(01)80205-7

    31. [31]

      Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1990, 55, 7.

    32. [32]

      Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.  doi: 10.1016/S0040-4039(01)91316-4

    33. [33]

      Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.  doi: 10.1021/ja970402f

    34. [34]

      Demico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974.  doi: 10.1021/jo971046m

    35. [35]

      Lee, C.-L. K.; Lee, C.-H. A.; Tan, K.-T.; Loh, T. -P. Org. Lett. 2004, 6, 1281.  doi: 10.1021/ol049633z

    36. [36]

      (a) Breit, B. Chem. Commun. 1997, 591.
      (b) Breit, B. Eur. J. Org. Chem. 1998, 63, 1123.

    37. [37]

      For reviews, see:
      (a) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243.
      (b) Gradillas, A.; Perez-Castells, J. Angew. Chem., Int. Ed. 2006, 45, 6086.
      (c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490.
      (d) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
      (f) Rstner, A. F. Angew. Chem., Int. Ed. 2000, 39, 3012, and references therein.

    38. [38]

      Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217.  doi: 10.1021/ol0400342

    39. [39]

      Laganis, E. D.; Chenard, B. L. Tetrahedron Lett. 1984, 25, 5831.  doi: 10.1016/S0040-4039(01)81697-X

    40. [40]

      Hong, S. H.; Sanders, H. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 17160.  doi: 10.1021/ja052939w

    41. [41]

      (a) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277.
      (b) Radomkit, S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014, 53, 3387.

    42. [42]

      Wang, C.; Haeffner, F.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 1939.  doi: 10.1002/anie.v52.7

    43. [43]

      Smith Ⅲ, A. B.; Adams, C. M.; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 2001, 123, 5925.  doi: 10.1021/ja0106164

    44. [44]

      Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.  doi: 10.1021/cr00032a009

    45. [45]

      Hicks, D. R.; Fraser-Reid, B. Synthesis 1974, 203.

    46. [46]

      Shiina, I.; Fukui, H.; Sasaki, A. Nat. Protoc. 2007, 2, 2312.  doi: 10.1038/nprot.2007.316

    47. [47]

      (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
      (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307.

    48. [48]

      Chakraborty, T. K.; Chattopadhyay, A. K. J. Org. Chem. 2008, 73, 3578.  doi: 10.1021/jo800181n

    49. [49]

      Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.  doi: 10.1016/S0040-4039(01)80205-7

    50. [50]

      Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091.  doi: 10.1016/S0040-4020(01)97963-3

    51. [51]

      Liu, K.; Taylor, R. E.; Kartika, R. Org. Lett. 2006, 8, 5393.  doi: 10.1021/ol0623318

    52. [52]

      Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.  doi: 10.1016/S0040-4039(01)91316-4

    53. [53]

      Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.  doi: 10.1021/jo00170a070

    54. [54]

      Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044.  doi: 10.1021/ja043612i

    55. [55]

      Inanaga, J.; Baba, Y.; Hanamoto, T. Chem. Lett. 1993, 241.

    56. [56]

      Lee, E. Pure Appl. Chem. 2005, 77, 2073.

    57. [57]

      Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 403.  doi: 10.1021/jo971758c

    58. [58]

      Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.  doi: 10.1021/ja00475a040

    59. [59]

      Ireland, R. E.; Wipf, P.; Armstrong, J. D., Ⅲ J. Org. Chem. 1991, 56, 650.  doi: 10.1021/jo00002a030

    60. [60]

      Mori, G.; Kuwahar, S. Tetrahedron 1982, 38, 521.  doi: 10.1016/0040-4020(82)80096-3

    61. [61]

      (a) Trost, B. M.; Kondo, Y. Tetrahedron Lett. 1991, 32, 1613.
      (b) Walsh, T. F.; Toupence, R. B.; Ujjainwalla, F.; Young, J. R.; Goulet, M. T. Tetrahedron 2001, 57, 5233.

    62. [62]

      (a) Lu, Y.; Kim, I. S.; Hassan, A.; Del Valle, D. J.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 5018.
      (b) Han, S. B.; Hassan, A.; Kim, I. S.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 15559.

    63. [63]

      (a) Yang, Z.; Xie, X. G.; Jing, P.; Zhao, G. Y.; Zheng, J. Y.; Zhao, C. G.; She, X. G. Org. Biomol. Chem. 2011, 9, 984.
      (b) White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1999, 40, 1463.
      (c) Hornberger, K. R.; Hamblett, C. L.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 12894.

    64. [64]

      (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
      (b) Hanessian, S.; Giroux, S.; Larsson, A. Org. Lett. 2006, 8, 5481.
      (c) Seden, P. T.; Charmant, J. P. H.; Willis, C. L. Org. Lett. 2008, 10, 1637.

    65. [65]

      Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822.  doi: 10.1021/jo030367x

    66. [66]

      Denmark, S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971.  doi: 10.1021/ja052226d

    67. [67]

      (a) Garegg, P. G.; Samuclson, B. Synthesis 1979, 813.
      (b) Garegg, P. J. Pure Appl. Chem. 1984, 56, 845.

    68. [68]

      Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee, E. Org. Lett. 2011, 13, 2476.  doi: 10.1021/ol2007296

    69. [69]

      (a) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506.
      (b) Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama, M.; Tamura, T. J. Org. Chem. 1989, 54, 2817.
      (c) de Koning, C. B.; Green, I. R.; Michael, J. P.; Oliveira, J. R. Tetrahedron 2001, 57, 9623.
      (d) Liu, B.; Zhou, W.-S. Tetrahedron Lett. 2003, 44, 4933.

    70. [70]

      Bai, Y.; Davis, D. C.; Dai, M. Angew. Chem., Int. Ed. 2014, 53, 6519.  doi: 10.1002/anie.201403006

  • 加载中
    1. [1]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    4. [4]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    13. [13]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    18. [18]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(20)
  • Abstract views(3580)
  • HTML views(659)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return