Citation: Chen Lu, Bo Shuhui, He Yanling, Chen Zhuo, Liu Xinhou, Zhen Zhen. Organic Second-Order Nonlinear Optical Chromophores Modified by Isolation Groups[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2263-2274. doi: 10.6023/cjoc201703008 shu

Organic Second-Order Nonlinear Optical Chromophores Modified by Isolation Groups

  • Corresponding author: Bo Shuhui, boshuhui@mail.ipc.ac.cn Zhen Zhen, zhenzhen@mail.ipc.ac.cn
  • Received Date: 2 March 2017
    Revised Date: 28 April 2017
    Available Online: 17 September 2017

    Fund Project: the National Natural Science Foundation of China 21504099Project supported by the National Natural Science Foundation of China (No. 21504099)

Figures(18)

  • Organic second-order nonlinear optical (NLO) chromophores are the main constituent part of nonlinear optical material. Scientists are dedicated to researching on the synthesis of novel chromophores with excellent performance by the facile design and modification of organic second-order NLO chromophores for decades. However, the researches on NLO chromophores in order to achieve the efficient translation of molecular microscopic nonlinearity (hyperpolarizability β) into macroscopic electro-optic (EO) coefficients r33 is still a challenging task. In recent years, a large number of essays report the novel NLO chromophores by adding isolation groups which can change the shape of chromophores and decrease the electrostatic interaction aimed to achieve the bigger EO coefficients. In this review, the recent processes of novel NLO chromophores modified by isolation groups are reviewed systematically and comprehensively.
  • 加载中
    1. [1]

      Zhang, A.-R.; Xiao, H.-Y.; Cong, S.-Y.; Zhang, M.-L.; Zhang, H.; Bo, S.-H.; Wang, Q.; Zhen, Z.; Liu, X.-H. J. Mater. Chem. C 2015, 3, 370.  doi: 10.1039/C4TC01896F

    2. [2]

      Chen, D.-T.; Fetterman, H. R.; Chen, A.-T.; Steier, W. H.; Dalton, L. R.; Wang, W.-S.; Shi, Y.-Q. Appl. Phys. Lett. 1997, 70, 3335.  doi: 10.1063/1.119162

    3. [3]

      Ding, R.; Baehr-Jones, T.; Kim, W.-J.; Spott, A.; Fournier, M.; Fedeli, J.-M.; Huang, S.; Luo, J.-D.; Jen, A. K.-Y.; Dalton, L.; Hochberg, M. J. Lightwave Technol. 2011, 29, 1112.  doi: 10.1109/JLT.2011.2122244

    4. [4]

      Liang, P.-X.; Mi, Y.-S.; Duan, J.-S.; Yang, Z.; Wang, D.; Cao, H.; He, W.-L. Chin. J. Chem. 2016, 34, 381.  doi: 10.1002/cjoc.201500144

    5. [5]

    6. [6]

      Li, Q.-Q.; Qin, J.-G.; Li, Z. Polym. Bull. 2010, 3(in Chinese).
       

    7. [7]

      Chou, M.-J.; Choi, D.-H.; Sullivan, P. A.; Akelaitis, A. J. P.; Dalton, L. R. Prog. Polym. Sci. 2008, 33, 1013.  doi: 10.1016/j.progpolymsci.2008.07.007

    8. [8]

      (a) Bai, Y.-W.; Song, N.-H.; Gao, J.-P.; Sun, X.; Wang, X.-M.; Yu, G.-M.; Wang, Z.-Y. J. Am. Chem. Soc. 2005, 127, 2060.
      (b) Dalton, L. In Polymers for Photonics Applications I, Ed.:Lee, K.-S., Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, p. 1.

    9. [9]

      (a) Shi, Y.-Q.; Zhang, C.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119.
      (b) Sinyukov, A. M.; Leahy, M. R.; Hayden, L. M.; Haller, M.; Luo, J.-D.; Jen, A. K.-Y.; Dalton, L. R. Appl. Phys. Lett. 2004, 85, 5827.

    10. [10]

      Pereverzev, Y. V.; Gunnerson, K. N.; Prezhdo, O. V.; Sullivan, P. A.; Liao, Y.; Olbricht, B. C.; Akelaitis, A. J. P.; Jen, A. K. Y.; Dalton, L. R. J. Phys. Chem. C 2008, 112, 4355.  doi: 10.1021/jp077194q

    11. [11]

      Udupa, A. H.; Erlig, H.; Tsap, B.; Chang, Y.; Chang, D.; Fetterman, H. R.; Zhang, H.; Sang-Shin, L.; Wang, F.; Steier, W. H.; Dalton, L. R. Electron. Lett. 1999, 35, 1702.  doi: 10.1049/el:19991181

    12. [12]

      Baehr-Jones, T.; Penkov, B.; Huang, J.; Sullivan, P.; Davies, J.; Takayesu, J.; Luo, J.-D.; Kim, T.-D.; Dalton, L.; Jen, A.; Hochberg, M.; Scherer, A. Appl. Phys. Lett. 2008, 92, 163303.  doi: 10.1063/1.2909656

    13. [13]

      Tian, Y.-Q.; Chen, C.-Y.; Haller, M. A.; Tucker, N. M.; Ka, J.-W.; Luo, J.-D.; Huang, S.; Jen, A. K. Y. Macromolecules 2007, 40, 97.  doi: 10.1021/ma061294x

    14. [14]

      Baehr-Jones, T.; Hochberg, M.; Wang, G.-X.; Lawson, R.; Liao, Y.; Sullivan, P. A.; Dalton, L.; Jen, A. K. Y.; Scherer, A. Opt. Express 2005, 13, 5216.  doi: 10.1364/OPEX.13.005216

    15. [15]

      (a) Yang, Y.-H.; Liu, F.-G.; Wang, H.-R.; Bo, S.-H.; Liu, J.-L.; Qiu, L.; Zhen, Z.; Liu, X.-H. J. Mater. Chem. C 2015, 3, 5297.
      (b) Steier, W. H.; Chen,A.-T.; Lee, S.-S.; Garner, S.; Zhang, H.; Chuyanov, V.; Dalton, L. R.; Wang, F.; Ren, A. S.; Zhang, C.; Todorova, G.; Harper, A.; Fetterman, H. R.; Chen, D.; Udupa, A.; Bhattacharya, D.; Tsap, B. Chem. Phys. 1999, 245, 487.
      (c) Mina, A. M.; Baez, H.; Martins, G. S. P.; Alayo, M. I. J. Non-Crst. Solids. 2008, 354, 2565;

    16. [16]

      Clays, K.; Persoons, A. Phys. Rev. Lett. 1991, 66, 2980.  doi: 10.1103/PhysRevLett.66.2980

    17. [17]

      El-Shishtawy, R. M.; Borbone, F.; Al-amshany, Z. M.; Tuzi, A.; Barsella, A.; Asiri, A. M.; Roviello, A. Dyes Pigm. 2013, 96, 45.  doi: 10.1016/j.dyepig.2012.08.002

    18. [18]

      (a) Zhang, C.; Dalton, L. R.; Oh, M.-C.; Zhang, H.; Steier, W. H. Chem. Mater. 2001, 13, 3043.
      (b) Harper, A. W.; Sun, S.; Dalton, L. R.; Garner, S. M.; Chen, A.; Kalluri, S.; Steier, W. H.; Robinson, B. H. J. Opt. Soc. Am. B:Opt. Phys. 1998, 15, 329.
      (c) Dalton, L. R.; Harper, A. W.; Robinson, B. H. Proc. Natl Acad. Sci. U. S. A. 1997, 94, 4842.

    19. [19]

    20. [20]

      Zhang, W.; He, C.-Y.; Xiao, X.-W.; Song, W.-N.; Gao, Y.-C.; Chen, Z.-M.; Dong, Y.-L.; Wu, Y.-Q.; Wang, Q. Chin. J. Chem. 2016, 34, 1006.  doi: 10.1002/cjoc.v34.10

    21. [21]

      (a) Ma, H.; Liu, S.; Luo, J.-D.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K.-Y. Adv. Funct. Mater. 2002, 12, 565.
      (b) Wang, H.-R.; Liu, F.-G.; Yang, Y.-H.; Xu, H.-J.; Peng, C.-C.; Bo, S.-H.; Zhen, Z.; Liu, X.-H.; Qiu, L. Dyes Pigm. 2015, 112, 42.

    22. [22]

      Wu, W.-B.; Fu, Y.-J.; Wang, C.; Xu, Z.; Ye, C.; Qin, J.-G.; Li, Z. Chin. J. Polym. Sci. 2013, 31, 1415.  doi: 10.1007/s10118-013-1343-3

    23. [23]

      Hu, C.-L.; Liu, F.-G.; Zhang, H.; Huo, F.-Y.; Yang, Y.-H.; Wang, H.-R.; Xiao, H.-Y.; Chen, Z.; Liu, J.-L.; Qiu, L.; Zhen, Z.; Liu, X.-H.; Bo, S.-H. J. Mater. Chem. C 2015, 3, 11595.  doi: 10.1039/C5TC02702K

    24. [24]

      Sullivan, P. A.; Rommel, H.; Liao, Y.; Olbricht, B. C.; Akelaitis, A. J. P.; Firestone, K. A.; Kang, J.-W.; Luo, J.-D.; Davies, J. A.; Choi, D. H.; Eichinger, B. E.; Reid, P. J.; Chen, A.-T.; Jen, A. K. Y.; Robinson, B. H.; Dalton, L. R. J. Am. Chem. Soc. 2007, 129, 7523.  doi: 10.1021/ja068322b

    25. [25]

      Peng, C.-C.; Wu, J.-Y.; Liu, J.-L.; Qiu, L.; Liu, X.-H.; Bo, S.-H.; Zhen, Z. Polym. Chem. 2013, 4, 2703.  doi: 10.1039/c3py20935k

    26. [26]

      Huang, H.-Y.; Deng, G.-W.; Liu, J.-L.; Wu, J.-Y.; Si, P.; Xu, H.-J.; Bo, S.-H.; Qiu, L.; Zhen, Z.; Liu, X.-H. Dyes Pigm. 2013, 99, 753.  doi: 10.1016/j.dyepig.2013.06.034

    27. [27]

      Xu, H.-J.; Zhang, M.-L.; Zhang, A.-R.; Deng, G.-W.; Si, P.; Huang, H.-Y.; Peng, C.-C.; Fu, M.-K.; Liu, J.-L.; Qiu, L.; Zhen, Z.; Bo, S.-H.; Liu, X.-H. Dyes Pigm. 2014, 102, 142.  doi: 10.1016/j.dyepig.2013.10.042

    28. [28]

      Sullivan, P. A.; Akelaitis, A. J. P.; Lee, S. K.; McGrew, G.; Lee, S. K.; Choi, D. H.; Dalton, L. R. Chem. Mater. 2006, 18, 344.  doi: 10.1021/cm0517420

    29. [29]

      (a) Li, Z.-A.; Li, P.-C.; Dong, S.-C.; Zhu, Z.-C.; Li, Q.-Q.; Zeng, Q.; Li, Z.; Ye, C.; Qin, J.-G. Polymer 2007, 48, 3650.
      (b) Li, Q.-Q.; Li, Z.; Zeng, F.-X.; Gong, W.; Li, Z.-A.; Zhu, Z.-C.; Zeng, Q.; Yu, S.-S.; Ye, C.; Qin, J.-G. J. Phys. Chem. B 2007, 111, 508.

    30. [30]

      (a) Wu, W.-B; Qin, J.-G.; Li, Z. Polymer 2013, 54, 4351.
      (b) Li, Z.; Dong, S.; Yu, G.; Li, Z.; Liu, Y.; Ye, C.; Qin, J. Polymer 2007, 48, 5520.
      (c) Kityk, I. V.; Alzayed, N.; Reshak, A. H.; Plucinski, K. J.; Berdowski, J.; Fuks-Janczarek, I.; Miedzinski, R.; Tylczynski, Z. Funct. Mater. Lett. 2011, 04, 357.

    31. [31]

      Li, Q.-Q.; Qin, J.-G.; Li, Z. Chin. J. Org. Chem. 2011, 31, 1337(in Chinese).
       

    32. [32]

      Hammond, S. R.; Clot, O.; Firestone, K. A.; Bale, D. H.; Lao, D.; Haller, M.; Phelan, G. D.; Carlson, B.; Jen, A. K. Y.; Reid, P. J.; Dalton, L. R. Chem. Mater. 2008, 20, 3425.  doi: 10.1021/cm800054y

    33. [33]

      Robinson, B. H.; Dalton, L. R.; Harper, A. W.; Ren, A.; Wang, F.; Zhang, C.; Todorova, G.; Lee, M.; Aniszfeld, R.; Garner, S.; Chen, A.; Steier, W. H.; Houbrecht, S.; Persoons, A.; Ledoux, I.; Zyss, J.; Jen, A. K. Y. Chem. Phys. 1999, 245, 35.  doi: 10.1016/S0301-0104(99)00079-8

    34. [34]

      Yang, Y.-H.; Wang, H.-R.; Liu, F.-G.; Yang, D.; Bo, S.-H.; Qiu, L.; Zhen, Z.; Liu, X.-H. Phys. Chem. Chem. Phys. 2015, 17, 5776.  doi: 10.1039/C4CP05829A

    35. [35]

      Liu, F.-G.; Zhang, M.-L.; Xiao, H.-Y.; Yang, Y.-H.; Wang, H.-R.; Liu, J.-L.; Bo, S.-H.; Zhen, Z.; Liu, X.-H.; Qiu, L. J. Mater. Chem. C 2015, 3, 9283.  doi: 10.1039/C5TC01610J

    36. [36]

      Luo, J.-D.; Haller, M.; Ma, H.; Liu, S.; Kim, T.-D.; Tian, Y.-Q.; Chen, B.-Q.; Jang, S.-H.; Dalton, L. R.; Jen, A. K. Y. J. Phys. Chem. B 2004, 108, 8523.  doi: 10.1021/jp036714o

    37. [37]

      Cheng, Y.-J.; Luo, J.-D.; Hau, S.; Bale, D. H.; Kim, T.-D.; Shi, Z.-W.; Lao, D. B.; Tucker, N. M.; Tian, Y.-Q.; Dalton, L. R.; Reid, P. J.; Jen, A. K. Y. Chem. Mater. 2007, 19, 1154.  doi: 10.1021/cm062340a

    38. [38]

      Yang, Y.-H.; Bo, S.-H.; Wang, H.-R.; Liu, F.-G.; Liu, J.-L.; Qiu, L.; Zhen, Z.; Liu, X.-H. Dyes Pigm. 2015, 122, 139.  doi: 10.1016/j.dyepig.2015.06.012

    39. [39]

      Wu, J.-Y.; Bo, S.-H.; Liu, J.-L.; Zhou, T.-T.; Xiao, H.-Y.; Qiu, L.; Zhen, Z.; Liu, X.-H. Chem. Commun. 2012, 48, 9637.  doi: 10.1039/c2cc34747d

    40. [40]

      (a) Wu, J.-Y.; Xiao, H.-Y.; Qiu, L.; Zhen, Z.; Liu, X.-H.; Bo, S.-H. RSC Adv. 2014, 4, 49737.
      (b) Wu, J.-Y.; Peng, C.-C.; Xiao, H.-Y.; Bo, S.-H.; Qiu, L.; Zhen, Z.; Liu, X.-H. Dyes Pigm. 2014, 104, 15.
      (c) Wu, J.-Y.; Liu, J.-L.; Zhou, T.-T.; Bo, S.-H.; Qiu, L.; Zhen, Z.; Liu, X.-H. RSC Adv. 2012, 2, 1416.

    41. [41]

      Kim, T.-D.; Luo, J.-D.; Tian, Y.-Q.; Ka, J.-W.; Tucker, N. M.; Haller, M.; Kang, J.-W.; Jen, A. K. Y. Macromolecules 2006, 39, 6951.  doi: 10.1021/ma0608875

    42. [42]

      Zhang, H.; Huo, F.-Y.; Liu, F.-G.; Chen, Z.; Liu, J.-L.; Bo, S.-H.; Zhen, Z.; Qiu, L. RSC Adv. 2016, 6, 99743.  doi: 10.1039/C6RA21814H

    43. [43]

      Deng, G.-W.; Huang, H.-Y.; Peng, C.-C.; Zhang, A.-R.; Zhang, M.-L.; Bo, S.-H.; Liu, X.-H.; Zhen, Z.; Qiu, L. RSC Adv. 2014, 4395.

    44. [44]

      Li, Z.-A.; Wu, W.-B.; Hu, P.; Wu, X.-J.; Yu, G.; Liu, Y.-Q.; Ye, C.; Li, Z.; Qin, J.-G. Dyes Pigm. 2009, 81, 264.  doi: 10.1016/j.dyepig.2008.10.014

    45. [45]

      Li, Z.; Li, Q.-Q.; Qin, J.-G. Polym. Chem. 2011, 2, 2723.  doi: 10.1039/c1py00205h

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    5. [5]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    14. [14]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(11)
  • Abstract views(3518)
  • HTML views(1440)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return