Citation: Li Yinwu, Zhang Jianyu, Shu Siwei, Shao Youxiang, Liu Yan, Ke Zhuofeng. Boron-Based Lewis Acid Transition Metal Complexes as Potential Bifunctional Catalysts[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2187-2202. doi: 10.6023/cjoc201703002 shu

Boron-Based Lewis Acid Transition Metal Complexes as Potential Bifunctional Catalysts

  • Corresponding author: Liu Yan, yanliu@gdut.edu.cn Ke Zhuofeng, kezhf3@mail.sysu.edu.cn
  • Received Date: 1 March 2017
    Revised Date: 27 May 2017
    Available Online: 14 September 2017

    Fund Project: the National Natural Science Foundation of China 21502023the Guangdong Natural Science Funds for Distinguished Young Scholar 2015A030306027Project supported by the National Natural Science Foundation of China (Nos. 21673301, 21473261, 21502023) and the Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2015A030306027)the National Natural Science Foundation of China 21673301the National Natural Science Foundation of China 21473261

Figures(37)

  • Lewis acid-transition metal (LA-TM) complexes, with the LA site functions as an electron acceptor and the TM center functions as an electron donor, have been emerging as a new type of bifunctional catalysts lately, different from traditional transition metal bifunctional catalysts. Due to their rapid developments recently, the boron-based LA-TM complexes, which are divided into three major types, the sp3, sp2, and sp boron-based complexes, are reviewed in this paper according to their binding features. Reactions promoted by this new type of LA-TM bifunctional catalysts have been surveyed, including migration reactions, activation of H-H/E-H/E-E bonds, hydrogenations, hydrosilylations, and transfer dehydrogenation reactions etc. This overview of boron-based LA-TM complexes could provide valuable information to explore the new horizon in LA-TM bifunctional catalysis.
  • 加载中
    1. [1]

      (a) Hu, X. L. Chem. Sci. 2011, 2, 1867.
      (b) Khusnutdinova, J. R. ; Milstein, D. Angew. Chem. , Int. Ed. 2015, 54, 12236.

    2. [2]

      (a) Kubas, G. J. Chem. Rev. 2007, 107, 4152. 10, 701.

    3. [3]

      (a) Ikariya, T. ; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
      (b) Kuwata, S. ; Ikariya, T. Chem. Commun. 2014, 50, 14290.

    4. [4]

      (a) Szostak, J. W. Medicina-Buenos Aires 2016, 76, 199.
      (b) Szostak, J. W. Nature 2009, 459, 171.
      (c) Szostak, J. W. ; Bartel, D. P. ; Luisi, P. L. Nature 2001, 409, 387.
      (d) Mansy, S. S. ; Szostak, J. W. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13351.

    5. [5]

      (a) Fontecilla-Camps, J. C. ; Volbeda, A. ; Cavazza, C. ; Nicolet, Y. Chem. Rev. 2007, 107, 4273.
      (b) Silakov, A. ; Wenk, B. ; Reijerse, E. ; Lubitz, W. Phys. Chem. Chem. Phys. 2009, 11, 6592.
      (c) Barton, B. E. ; Olsen, M. T. ; Rauchfuss, T. B. J. Am. Chem. Soc. 2008, 130, 16834.
      (d) Gordon, J. C. ; Kubas, G. J. Organometallics 2010, 29, 4682.

    6. [6]

      (a) Hou, C. ; Jiang, J. X. ; Li, Y. W. ; Zhao, C. Y. ; Ke, Z. F. ACS Catal. 2017, 7, 786.
      (b) Hou, C. ; Zhang, Z. H. ; Zhao, C. Y. ; Ke, Z. F. Inorg. Chem. 2016, 55, 6539.

    7. [7]

      Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.  doi: 10.1021/ar9502341

    8. [8]

      (a) Morris, R. H. Chem. Rec. 2016, 16, 2644.
      (b) Annibale, V. T. ; Song, D. T. RSC Adv. 2013, 3, 11432.
      (c) Zhao, B. G. ; Han, Z. B. ; Ding, K. L. Angew. Chem. , Int. Ed. 2013, 52, 4744.
      (d) DuBois, D. L. Inorg. Chem. 2014, 53, 3935.
      (e) Crabtree, R. H. New J. Chem. 2011, 35, 18.
      (f) Appel, A. M. ; Bercaw, J. E. ; Bocarsly, A. B. ; Dobbek, H. ; DuBois, D. L. ; Dupuis, M. ; Ferry, J. G. ; Fujita, E. ; Hille, R. ; Kenis, P. J. A. ; Kerfeld, C. A. ; Morris, R. H. ; Peden, C. H. F. ; Portis, A. R. ; Ragsdale, S. W. ; Rauchfuss, T. B. ; Reek, J. N. H. ; Seefeldt, L. C. ; Thauer, R. K. ; Waldrop, G. L. Chem. Rev. 2013, 113, 6621.
      (g) Fujita, E. ; Muckerman, J. T. ; Himeda, Y. Biochim. Biophys. Acta, Bioenerg. 2013, 1827, 1031.

    9. [9]

      (a) Owen, G. R. Chem. Commun. 2016, 52, 10712.
      (b) Bouhadir, G. ; Bourissou, D. Chem. Soc. Rev. 2016, 45, 1065.
      (c) Dang, L. ; Lin, Z. ; Marder, T. B. Chem. Commun. 2009, 3987.
      (d) Braunschweig, H. ; Dewhurst, R. D. ; Schneider, A. Chem. Rev. 2010, 110, 3924.
      (e) Braunschweig, H. ; Colling, M. Coord. Chem. Rev. 2001, 223, 1.

    10. [10]

      (a) Devillard, M. ; Bouhadir, G. ; Bourissou, D. Angew. Chem. , Int. Ed. 2015, 54, 730.
      (b) Li, Y. W. ; Hou, C. ; Jiang, J. X. ; Zhang, Z. H. ; Zhao, C. Y. ; Page, A. J. ; Ke, Z. F. ACS Catal. 2016, 6, 1655.

    11. [11]

      (a) Tsoureas, N. ; Hamilton, A. ; Haddow, M. F. ; Harvey, J. N. ; Orpen, A. G. ; Owen, G. R. Organometallics 2013, 32, 2840.
      (b) Harman, W. H. ; Lin, T. P. ; Peters, J. C. Angew. Chem. , Int. Ed. 2014, 53, 1081.
      (c) Zeng, G. ; Sakaki, S. Inorg. Chem. 2013, 52, 2844.

    12. [12]

      (a) Harman, W. H. ; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080.
      (b) Fong, H. ; Moret, M. E. ; Lee, Y. ; Peters, J. C. Organometallics 2013, 32, 305.
      (c) Lin, T. P. ; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310.

    13. [13]

      Rudd, P. A.; Liu, S. S.; Gagliardi, L.; Young, V. G.; Lu, C. C. J. Am. Chem. Soc. 2011, 133, 20724.  doi: 10.1021/ja2099744

    14. [14]

      Cammarota, R. C.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 12486.  doi: 10.1021/jacs.5b08313

    15. [15]

      Riddlestone, I. M.; Rajabi, N. A.; Lowe, J. P.; Mahon, M. F.; Macgregor, S. A.; Whittlesey, M. K. J. Am. Chem. Soc. 2016, 138, 11081.  doi: 10.1021/jacs.6b05243

    16. [16]

      Yang, H. F.; Gabbai, F. P. J. Am. Chem. Soc. 2015, 137, 13425.  doi: 10.1021/jacs.5b07998

    17. [17]

      Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38, 2759.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Tsoureas, N.; Kuo, Y. Y.; Haddow, M. F.; Owen, G. R. Chem. Commun. 2011, 47, 484.  doi: 10.1039/C0CC02245D

    19. [19]

      (a) Blagg, R. J. ; Charmant, J. P. H. ; Connelly, N. G. ; Haddow, M. F. ; Orpen, A. G. Chem. Commun. 2006, 2350.
      (b) Landry, V. K. ; Melnick, J. G. ; Buccella, D. ; Pang, K. L. ; Ulichny, J. C. ; Parkin, G. Inorg. Chem. 2006, 45, 2588.
      (c) Senda, S. ; Ohki, Y. ; Hirayama, T. ; Toda, D. ; Chen, J. L. ; Matsumoto, T. ; Kawaguchi, H. ; Tatsumi, K. Inorg. Chem. 2006, 45, 9914.
      (d) Crossley, I. R. ; Foreman, M. R. S. J. ; Hill, A. F. ; Owen, G. R. ; White, A. J. P. ; Williams, D. J. ; Willis, A. C. Organometallics 2008, 27, 381.
      (e) Crossley, I. R. ; Hill, A. F. Dalton Trans. 2008, 201.
      (f) Crossley, I. R. ; Hill, A. F. ; Willis, A. C. Organometallics 2008, 27, 312.
      (g) Pang, K. L. ; Tanski, J. M. ; Parkin, G. Chem. Commun. 2008, 1008.
      (h) Blagg, R. J. ; Adams, C. J. ; Charmant, J. P. H. ; Connelly, N. G. ; Haddow, M. F. ; Hamilton, A. ; Knight, J. ; Orpen, A. G. ; Ridgway, B. M. Dalton Trans. 2009, 8724.
      (i) Rudolf, G. C. ; Hamilton, A. ; Orpen, A. G. ; Owen, G. R. Chem. Commun. 2009, 553.
      (j) Crossley, I. R. ; Hill, A. F. ; Willis, A. C. Organometallics 2010, 29, 326.
      (k) Lopez-Gomez, M. J. ; Connelly, N. G. ; Haddow, M. F. ; Hamilton, A. ; Orpen, A. G. Dalton Trans. 2010, 39, 5221.

    20. [20]

      (a) Tsoureas, N. ; Bevis, T. ; Butts, C. P. ; Hamilton, A. ; Owen, G. R. Organometallics 2009, 28, 5222.
      (b) Tsoureas, N. ; Haddow, M. F. ; Hamilton, A. ; Owen, G. R. Chem. Commun. 2009, 2538.
      (c) Blagg, R. J. ; Connelly, N. G. ; Haddow, M. F. ; Hamilton, A. ; Lusi, M. ; Orpen, A. G. ; Ridgway, B. M. Dalton Trans. 2010, 39, 11616.

    21. [21]

      Lopez-Gomez, M. J.; Connelly, N. G.; Haddow, M. F.; Hamilton, A.; Lusi, M.; Baisch, U.; Orpen, A. G. Dalton Trans. 2011, 40, 4647.  doi: 10.1039/c0dt01718c

    22. [22]

      Figueroa, J. S.; Melnick, J. G.; Parkin, G. Inorg. Chem. 2006, 45, 7056.  doi: 10.1021/ic061353n

    23. [23]

      Mihalcik, D. J.; White, J. L.; Tanski, J. M.; Zakharov, L. N.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L.; Rabinovich, D. Dalton Trans. 2004, 1626.

    24. [24]

      Crossley, I. R.; Foreman, M. R. S.; Hill, A. F.; White, A. J. P.; Williams, D. J. Chem. Commun. 2005, 221.

    25. [25]

      Bontemps, S.; Bouhadir, G.; Dyer, P. W.; Miqueu, K.; Bourissou, D. Inorg. Chem. 2007, 46, 5149.  doi: 10.1021/ic7006556

    26. [26]

      (a) Bontemps, S. ; Bouhadir, G. ; Gu, W. ; Mercy, M. ; Chen, C. H. ; Foxman, B. M. ; Maron, L. ; Ozerov, O. V. ; Bourissou, D. Angew. Chem. , Int. Ed. 2008, 47, 1481.
      (b) Sircoglou, M. ; Bontemps, S. ; Bouhadir, G. ; Saffon, N. ; Miqueu, K. ; Gu, W. X. ; Mercy, M. ; Chen, C. H. ; Foxman, B. M. ; Maron, L. ; Ozerov, O. V. ; Bourissou, D. J. Am. Chem. Soc. 2008, 130, 16729.
      (c) Kameo, H. ; Hashimoto, Y. ; Nakazawa, H. Organometallics 2012, 31, 4251.
      (d) Suess, D. L. M. ; Tsay, C. ; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 14158.

    27. [27]

      Moret, M. E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 2063.  doi: 10.1002/anie.v50.9

    28. [28]

      Sircoglou, M.; Bontemps, S.; Mercy, M.; Saffon, N.; Takahashi, M.; Bouhadir, G.; Maron, L.; Bourissou, D. Angew. Chem., Int. Ed. 2007, 46, 8583.  doi: 10.1002/anie.v46:45

    29. [29]

      Boone, M. P.; Stephan, D. W. J. Am. Chem. Soc. 2013, 135, 8508.  doi: 10.1021/ja403912n

    30. [30]

      (a) Schindler, T. ; Lux, M. ; Peters, M. ; Scharf, L. T. ; Osseili, H. ; Maron, L. ; Tauchert, M. E. Organometallics 2015, 34, 1978.
      (b) Nesbit, M. A. ; Suess, D. L. M. ; Peters, J. C. Organometallics 2015, 34, 4741.
      (c) Suess, D. L. M. ; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 12580.
      (d) Sircoglou, M. ; Bontemps, S. ; Mercy, M. ; Miqueu, K. ; Ladeira, S. ; Saffon, N. ; Maron, L. ; Bouhadir, G. ; Bourissou, D. Inorg. Chem. 2010, 49, 3983.
      (e) Kameo, H. ; Nakazawa, H. Organometallics 2012, 31, 7476.
      (f) Conifer, C. M. ; Law, D. J. ; Sunley, G. J. ; White, A. J. P. ; Britovsek, G. J. P. Organometallics 2011, 30, 4060.

    31. [31]

      Bontemps, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc. 2006, 128, 12056.  doi: 10.1021/ja0637494

    32. [32]

      Cowie, B. E.; Emslie, D. J. H. Chem.-Eur. J. 2014, 20, 16899.  doi: 10.1002/chem.201404846

    33. [33]

      Barnett, B. R.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. J. Am. Chem. Soc. 2014, 136, 10262.  doi: 10.1021/ja505843g

    34. [34]

      (a) Braunschweig, H. ; Radacki, K. ; Seeler, F. ; Whittell, G. R. Organometallics 2004, 23, 4178.
      (b) Braunschweig, H. ; Radacki, K. ; Seeler, F. ; Whittell, G. R. , Organometallics 2006, 25, 4605.

    35. [35]

      Bissinger, P.; Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Kraft, K.; Kramer, T.; Radacki, K. Chem.-Eur. J. 2013, 19, 13402.  doi: 10.1002/chem.201302263

    36. [36]

      Vondung, L.; Frank, N.; Fritz, M.; Alig, L.; Langer, R. Angew. Chem., Int. Ed. 2016, 55, 14448.

    37. [37]

      Frank, N.; Hanau, K.; Flosdorf, K.; Langer, R., Dalton Trans. 2013, 42, 11252.  doi: 10.1039/c3dt51254a

    38. [38]

      MacMillan, S. N.; Harman, W. H.; Peters, J. C. Chem. Sci. 2014, 5, 590.  doi: 10.1039/C3SC52626G

    39. [39]

      Boone, M. P.; Stephan, D. W. Chem.-Eur. J. 2014, 20, 3333.  doi: 10.1002/chem.v20.12

    40. [40]

      Suess, D. L. M.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 4938.  doi: 10.1021/ja400836u

    41. [41]

      Inagaki, F.; Matsumoto, C.; Okada, Y.; Maruyama, N.; Mukai, C., Angew. Chem., Int. Ed. 2015, 54, 818.  doi: 10.1002/anie.201408037

    42. [42]

      (a) Anderson, J. S. ; Rittle, J. ; Peters, J. C. Nature 2013, 501, 84.
      (b) Anderson, J. S. ; Moret, M. E. ; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 534.
      (c) Moret, M. E. ; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 18118.

    43. [43]

      (a) Baker, R. T. ; Ovenall, D. W. ; Calabrese, J. C. ; Westcott, S. A. ; Taylor, N. J. ; Williams, I. D. ; Marder, T. B. J. Am. Chem. Soc. 1990, 112, 9399.
      (b) Knorr, J. R. ; Merola, J. S. Organometallics 1990, 9, 3008.

    44. [44]

      Hartwig, J. F.; Huber, S. J. Am. Chem. Soc. 1993, 115, 4908.  doi: 10.1021/ja00064a069

    45. [45]

      Aldridge, S.; Al-Fawaz, A.; Calder, R. J.; Dickinson, A. A.; Willock, D. J.; Light, M. E.; Hursthouse, M. B. Chem. Commun. 2001, 1846.

    46. [46]

      Wadepohl, H.; Arnold, U.; Pritzkow, H. Angew. Chem., Int. Ed. 1997, 36, 974.  doi: 10.1002/(ISSN)1521-3773

    47. [47]

      Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Organometallics 2002, 21, 4862.  doi: 10.1021/om0203431

    48. [48]

      (a) Aldridge, S. ; Jones, C. ; Gans-Eichler, T. ; Stasch, A. ; Kays, D. L. ; Coombs, N. D. ; Willock, D. J. Angew. Chem. , Int. Ed. 2006, 45, 6118.
      (b) De, S. ; Pierce, G. A. ; Vidovic, D. ; Kays, D. L. ; Coombs, N. D. ; Jemmis, E. D. ; Aldridge, S. Organometallics 2009, 28, 2961.
      (c) Pierce, G. A. ; Vidovic, D. ; Kays, D. L. ; Coombs, N. D. ; Thompson, A. L. ; Jemmis, E. D. ; De, S. ; Aldridge, S. Organometallics 2009, 28, 2947.

    49. [49]

      Braunschweig, H.; Radacki, K.; Uttinger, K. Chem.-Eur. J. 2008, 14, 7858.  doi: 10.1002/chem.v14:26

    50. [50]

      (a) Curtis, D. ; Lesley, M. J. G. ; Norman, N. C. ; Orpen, A. G. ; Starbuck, J. J. Chem. Soc. , Dalton Trans. 1999, 1687.
      (b) Addy, D. A. ; Phillips, N. ; Pierce, G. A. ; Vidovic, D. ; Kramer, T. ; Mallick, D. ; Jemmis, E. D. ; Reid, G. ; Aldridge, S. Organometallics 2012, 31, 1092.

    51. [51]

      (a) Segawa, Y. ; Yamashita, M. ; Nozaki, K. Angew. Chem. , Int. Ed. 2007, 46, 6710.
      (b) Asay, M. ; Jones, C. ; Driess, M. Chem. Rev. 2011, 111, 354.
      (c) Frank, R. ; Howell, J. ; Campos, J. ; Tirfoin, R. ; Phillips, N. ; Zahn, S. ; Mingos, D. M. P. ; Aldridge, S. Angew. Chem. , Int. Ed. 2015, 54, 9586.
      (d) Lu, W. ; Hu, H. T. ; Li, Y. X. ; Ganguly, R. ; Kinjo, R. J. Am. Chem. Soc. 2016, 138, 6650.

    52. [52]

      Onozawa, S.-y.; Hatanaka, Y.; Sakakura, T.; Shimada, S.; Tanaka, M. Organometallics 1996, 15, 5450.  doi: 10.1021/om9607199

    53. [53]

      (a) Borner, C. ; Brandhorst, K. ; Kleeberg, C. Dalton Trans. 2015, 44, 8600.
      (b) Clark, G. R. ; Irvine, G. J. ; Roper, W. R. ; Wright, L. J. J. Organomet. Chem. 2003, 680, 81.
      (c) Habereder, T. ; Noth, H. Appl. Organomet. Chem. 2003, 17, 525.
      (d) Onozawa, S. ; Tanaka, M. Organometallics 2001, 20, 2956.
      (e) Okuno, Y. ; Yamashita, M. ; Nozaki, K. Angew. Chem. , Int. Ed. 2011, 50, 920;
      (f) Kajiwara, T. ; Terabayashi, T. ; Yamashita, M. ; Nozaki, K. Angew. Chem. , Int. Ed. 2008, 47, 6606.
      (g) Terabayashi, T. ; Kajiwara, T. ; Yamashita, M. ; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14162.

    54. [54]

      (a) Kawamura, K. ; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8422.
      (b) Aldridge, S. ; Calder, R. J. ; Baghurst, R. E. ; Light, M. E. ; Hursthouse, M. B. J. Organomet. Chem. 2002, 649, 9.
      (c) Braunschweig, H. ; Bertermann, R. ; Brenner, P. ; Burzler, M. ; Dewhurst, R. D. ; Radacki, K. ; Seeler, F. Chem. -Eur. J. 2011, 17, 11828.
      (d) Esteruelas, M. A. ; Lopez, A. M. ; Mora, M. ; Onate, E. Chem. Commun. 2013, 49, 7543.

    55. [55]

      Braunschweig, H.; Chiu, C. W.; Radacki, K.; Brenner, P. Chem. Commun. 2010, 46, 916.  doi: 10.1039/b923652j

    56. [56]

      Braunschweig, H.; Fernandez, I.; Frenking, G.; Radacki, K.; Seeler, F. Angew. Chem., Int. Ed. 2007, 46, 5215.  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      (a) Segawa, Y. ; Yamashita, M. ; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 9201.
      (b) Segawa, Y. ; Yamashita, M. ; Nozaki, K. Organometallics 2009, 28, 6234.

    58. [58]

      Miyada, T.; Kwan, E. H.; Yamashita, M. Organometallics 2014, 33, 6760.  doi: 10.1021/om500585j

    59. [59]

      Kwan, E. H.; Kawai, Y. J.; Kamakura, S.; Yamashita, M. Dalton Trans. 2016, 45, 15931.  doi: 10.1039/C6DT02075E

    60. [60]

      Hasegawa, M.; Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2012, 51, 6956.  doi: 10.1002/anie.201201916

    61. [61]

      Ogawa, H.; Yamashita, M. Dalton Trans. 2013, 42, 625.  doi: 10.1039/C2DT31892J

    62. [62]

      Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13672.  doi: 10.1021/ja504667f

    63. [63]

      Tanoue, K.; Yamashita, M. Organometallics 2015, 34, 4011.  doi: 10.1021/acs.organomet.5b00376

    64. [64]

      Braunschweig, H.; Kollann, C.; Englert, U. Angew. Chem., Int. Ed. 1998, 37, 3179.  doi: 10.1002/(ISSN)1521-3773

    65. [65]

      Braunschweig, H.; Colling, M.; Kollann, C.; Stammler, H. G.; Neumann, B. Angew. Chem., Int. Ed. 2001, 40, 2298.  doi: 10.1002/1521-3773(20010618)40:12<2298::AID-ANIE2298>3.0.CO;2-E

    66. [66]

      Braunschweig, H.; Colling, M.; Hu, C. H.; Radacki, K. Angew. Chem., Int. Ed. 2003, 42, 205.  doi: 10.1002/anie.200390079

    67. [67]

      Blank, B.; Colling-Hendelkens, M.; Kollann, C.; Radacki, K.; Rais, D.; Uttinger, K.; Whittell, G. R.; Braunschweig, H. Chem.-Eur. J. 2007, 13, 4770.  doi: 10.1002/(ISSN)1521-3765

    68. [68]

      Niemeyer, J.; Addy, D. A.; Riddlestone, I.; Kelly, M.; Thompson, A. L.; Vidovic, D.; Aldridge, S. Angew. Chem., Int. Ed. 2011, 50, 8908.  doi: 10.1002/anie.v50.38

    69. [69]

      O'Neill, M.; Addy, D. A.; Riddlestone, I.; Kelly, M.; Phillips, N.; Aldridge, S. J. Am. Chem. Soc. 2011, 133, 11500.  doi: 10.1021/ja2050748

    70. [70]

      Braunschweig, H.; Radacki, K.; Rais, D.; Schneider, A.; Seeler, F. J. Am. Chem. Soc. 2007, 129, 10350.  doi: 10.1021/ja0742636

    71. [71]

      Coombs, D. L.; Aldridge, S.; Jones, C.; Willock, D. J. J. Am. Chem. Soc. 2003, 125, 6356.  doi: 10.1021/ja0346936

    72. [72]

      Braunschweig, H.; Burzler, M.; Kupfer, T.; Radacki, K.; Seeler, F. Angew. Chem., Int. Ed. 2007, 46, 7785.  doi: 10.1002/(ISSN)1521-3773

    73. [73]

      Braunschweig, H.; Ye, Q.; Radacki, K. Chem. Commun. 2012, 48, 2701.  doi: 10.1039/c2cc17445f

    74. [74]

      Braunschweig, H.; Colling, M.; Kollann, C.; Merz, K.; Radacki, K. Angew. Chem., Int. Ed. 2001, 40, 4198.  doi: 10.1002/1521-3773(20011119)40:22<>1.0.CO;2-D

    75. [75]

      Braunschweig, H.; Kupfer, T.; Radacki, K.; Schneider, A.; Seeler, F.; Uttinger, K.; Wu, H. J. Am. Chem. Soc. 2008, 130, 7974.  doi: 10.1021/ja8016889

    76. [76]

      Braunschweig, H.; Radacki, K.; Rais, D.; Uttinger, K. Angew. Chem., Int. Ed. 2006, 45, 162.  doi: 10.1002/(ISSN)1521-3773

    77. [77]

      (a) Braunschweig, H. ; Radacki, K. ; Schneider, A. Science 2010, 328, 345.
      (b) Braunschweig, H. ; Radacki, K. ; Schneider, A. Chem. Commun. 2010, 46, 6473.

    78. [78]

      Alcaraz, G.; Helmstedt, U.; Clot, E.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2008, 130, 12878.  doi: 10.1021/ja805164n

    79. [79]

      Addy, D. A.; Bates, J. I.; Kelly, M. J.; Riddlestone, I. M.; Aldridge, S. Organometallics 2013, 32, 1583.  doi: 10.1021/om400040q

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    3. [3]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    4. [4]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    5. [5]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    6. [6]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    7. [7]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    8. [8]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    9. [9]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    10. [10]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    11. [11]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    12. [12]

      Yanjun CaiYong JiangYu ChenErzhuo ChengYuan GuYuwei LiQianqian LiuJian ZhangJifang LiuShisong HanBin Yang . Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chinese Chemical Letters, 2025, 36(5): 110437-. doi: 10.1016/j.cclet.2024.110437

    13. [13]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    14. [14]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    15. [15]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    16. [16]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    17. [17]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(43)
  • Abstract views(2551)
  • HTML views(557)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return