Citation: Zhou Wen-Jun, Zhang Yihan, Cao Guangmei, Liu Huidong, Yu Da-Gang. Palladium-Catalyzed Radical-Type Transformations of Alkyl Halides[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1322-1337. doi: 10.6023/cjoc201702051 shu

Palladium-Catalyzed Radical-Type Transformations of Alkyl Halides

  • Corresponding author: Zhou Wen-Jun, chemzhwj@126.com Yu Da-Gang, dgyu@scu.edu.cn
  • Received Date: 28 February 2017
    Revised Date: 5 May 2017

    Fund Project: the National Program on Key Basic Research Project of China 973 Programthe National Program on Key Basic Research Project of China 2015CB856600

Figures(18)

  • Palladium-catalyzed cross-coupling reactions have been developed for decades as useful methods in organic synthesis. Compared to aryl and alkenyl halides, alkyl halides are more challenging to be applied in cross-coupling reactions. This mainly arises from the difficulty in oxidative addition of alkyl halides to palladium catalyst, sluggish reductive elimination and competitive side reactions, such as β-H elimination and protonation, of the resulting alkylpalladium intermediates. These challenges have partly been overcome with the significant development of novel palladium catalysis involving single election transfer. A variety of cross couplings of alkyl halides have been developed. In this review the recent palladium-catalyzed radical alkylation using alkyl halides with the order of different types of coupling partners is summarized.
  • 加载中
    1. [1]

      (a) Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1483.
      (b) Tamura, M.; Kochi, J. K. J. Organomet. Chem. 1972, 42, 205.
      (c) Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 21, 691.
      (d) Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. 1996, 34, 2723.

    2. [2]

    3. [3]

      Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937.  doi: 10.1039/c1cs15129k

    4. [4]

      Ishihara, T.; Kuroboshi, M.; Okada, Y. Chem. Lett. 1986, 15, 1895.  doi: 10.1246/cl.1986.1895

    5. [5]

      Curran, D. P.; Chang, C.-T. Tetrahedron Lett. 1990, 31, 933.  doi: 10.1016/S0040-4039(00)94396-X

    6. [6]

      Yi, P.; Zhang, Z.; Hu, H. Synth. Commun. 1992, 22, 2019.  doi: 10.1080/00397919208021336

    7. [7]

      Surapanich, N.; Kuhakarn, C.; Pohmakotr, M.; Reutrakul, V. Eur. J. Org. Chem. 2012, 2012, 5943.  doi: 10.1002/ejoc.v2012.30

    8. [8]

      Zou, Y.; Zhou, J. Chem. Commun. 2014, 50, 3725.  doi: 10.1039/C4CC00297K

    9. [9]

      Bissember, A. C.; Levina, A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 14232.  doi: 10.1021/ja306323x

    10. [10]

      McMahon, C. M.; Alexanian, E. J. Angew. Chem., Int. Ed. 2014, 53, 5974.  doi: 10.1002/anie.201311323

    11. [11]

      Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 20146.  doi: 10.1021/ja2091883

    12. [12]

      (a) Hidai, M.; Kokura, M.; Uchida, Y. J. Organomet. Chem. 1973, 52, 431.
      (b) Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics 1984, 3, 683.
      (c) Cavinato, G.; Toniolo, L.; Vavasori, A. J. Mol. Catal. A: Chem. 2004, 219, 233.

    13. [13]

      Dong, X.; Han, Y.; Yan, F.; Liu, Q.; Wang, P.; Chen, K.; Li, Y.; Zhao, Z.; Dong, Y.; Liu, H. Org. Lett. 2016, 18, 3774.  doi: 10.1021/acs.orglett.6b01787

    14. [14]

      Sumino, S.; Ryu, I. Org. Lett. 2016, 18, 52.  doi: 10.1021/acs.orglett.5b03238

    15. [15]

      Liu, H.; Qiao, Z.; Jiang, X. Org. Biomol. Chem. 2012, 10, 7274.  doi: 10.1039/c2ob25990g

    16. [16]

      Fan, J.-H.; Wei, W.-T.; Zhou, M.-B.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2014, 53, 6650.  doi: 10.1002/anie.201402893

    17. [17]

      Liu, Q.; Chen, C.; Tong, X. Tetrahedron Lett. 2015, 56, 4483.  doi: 10.1016/j.tetlet.2015.05.094

    18. [18]

      Wang, H.; Guo, L.-N.; Duan, X.-H. J. Org. Chem. 2016, 81, 860.  doi: 10.1021/acs.joc.5b02433

    19. [19]

      Xia, X.-F.; Zhu, S.-L.; Li, Y.; Wang, H. RSC Adv. 2016, 6, 51703.  doi: 10.1039/C6RA05744F

    20. [20]

      Fruchey, E. R.; Monks, B. M.; Patterson, A. M.; Cook, S. P. Org. Lett. 2013, 15, 4362.  doi: 10.1021/ol4018694

    21. [21]

      Monks, B. M.; Cook, S. P. Angew. Chem., Int. Ed. 2013, 52, 14214.  doi: 10.1002/anie.201308534

    22. [22]

      Li, Z.; García-Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610.  doi: 10.1021/jacs.5b07432

    23. [23]

      He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2015, 17, 5188.  doi: 10.1021/acs.orglett.5b02512

    24. [24]

      Domański, S.; Chaładaj, W. ACS Catal. 2016, 6, 3452.  doi: 10.1021/acscatal.6b00777

    25. [25]

      Wang, Q.; He, Y.-T.; Zhao, J.-H.; Qiu, Y.-F.; Zheng, L.; Hu, J.-Y.; Yang, Y.-C.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 2664.  doi: 10.1021/acs.orglett.6b01038

    26. [26]

      Xiao, B.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616.  doi: 10.1021/ja3113752

    27. [27]

      Wu, X.; See, J. W. T.; Xu, K.; Hirao, H.; Roger, J.; Hierso, J.-C.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 13573.  doi: 10.1002/anie.201408355

    28. [28]

      Shao, C.; Shi, G.; Zhang, Y.; Pan, S.; Guan, X. Org. Lett. 2015, 17, 2652.  doi: 10.1021/acs.orglett.5b01024

    29. [29]

      Venning, A. R. O.; Bohan, P. T.; Alexanian, E. J. J. Am. Chem. Soc. 2015, 137, 3731.  doi: 10.1021/jacs.5b01365

    30. [30]

      Li, Z.-Y.; Li, L.; Li, Q.-L.; Jing, K.; Xu, H.; Wang, G.-W. Chem. Eur. J. 2017, 23, 3285.  doi: 10.1002/chem.201700354

    31. [31]

      Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal. 2015, 5, 6111.  doi: 10.1021/acscatal.5b01469

    32. [32]

      Tsuji, J.; Sato, K.; Nagashima, H. Tetrahedron 1985, 41, 5003.  doi: 10.1016/S0040-4020(01)96745-6

    33. [33]

      Urata, H.; Ishii, Y.; Fuchikami, T. Tetrahedron Lett. 1989, 30, 4407.  doi: 10.1016/S0040-4039(00)99373-0

    34. [34]

      Ishiyama, T.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1991, 32, 6923.  doi: 10.1016/0040-4039(91)80445-C

    35. [35]

      Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295.

    36. [36]

      Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2002, 124, 3812.  doi: 10.1021/ja017315e

    37. [37]

      Fukuyama, T.; Nishitani, S.; Inouye, T.; Morimoto, K.; Ryu, I. Org. Lett. 2006, 8, 1383.  doi: 10.1021/ol060123+

    38. [38]

      Bloome, K. S.; Alexanian, E. J. J. Am. Chem. Soc. 2010, 132, 12823.  doi: 10.1021/ja1053913

    39. [39]

      Fusano, A.; Fukuyama, T.; Nishitani, S.; Inouye, T.; Ryu, I. Org. Lett. 2010, 12, 2410.  doi: 10.1021/ol1007668

    40. [40]

      (a) Fusano, A.; Sumino, S.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 2114.
      (b) Fusano, A.; Sumino, S.; Nishitani, S.; Inouye, T.; Morimoto, K.; Fukuyama, T.; Ryu, I. Chem. Eur. J. 2012, 18, 9415.

    41. [41]

      (a) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Synlett 2012, 23, 1331.
      (b) Sumino, S.; Ui, T.; Ryu, I. Org. Lett. 2013, 15, 3142.
      (c) Sumino, S.; Ui, T.; Hamada, Y.; Fukuyama, T.; Ryu, I. Org. Lett. 2015, 17, 4952.
      (d) Sumino, S.; Ui, T.; Ryu, I. Org. Chem. Front. 2015, 2, 1085.

    42. [42]

      Zhao, H.-Y.; Feng, Z.; Luo, Z.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 10401.  doi: 10.1002/anie.201605380

    43. [43]

      Sargent, B. T.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 7520.  doi: 10.1021/jacs.6b04610

    44. [44]

      Peacock, D. M.; Roos, C. B.; Hartwig, J. F. ACS Cent. Sci. 2016, 2, 647.  doi: 10.1021/acscentsci.6b00187

    45. [45]

      Prieto, A.; Melot, R.; Bouyssi, D.; Monteiro, N. Angew. Chem., Int. Ed. 2016, 55, 1885.  doi: 10.1002/anie.201510334

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    13. [13]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(115)
  • Abstract views(7768)
  • HTML views(2477)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return