Citation: Yang Jun, Fu Ting, Long Yang, Zhou Xiangge. Progress in Catalytic C-H Activation Reactions in Water[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1111-1116. doi: 10.6023/cjoc201702045 shu

Progress in Catalytic C-H Activation Reactions in Water

  • Corresponding author: Zhou Xiangge, zhouxiangge@scu.edu.cn
  • Received Date: 27 February 2017
    Revised Date: 22 March 2017

    Fund Project: the National Natural Science Foundation of China J1310008the National Natural Science Foundation of China Nos. 21472128

Figures(4)

  • C-H bond functionalization is one of the hot spots in the research field of organic chemistry, and selective C-H activation is a challenging project. Among these reactions, organic solvent is normally used as reaction media. Using cheap, environmentally friendly water as reaction solvent would be in line with the requirements of "green chemistry" and low-carbon sustainable development. This paper reviews the recent progress of aqueous catalyzed C-H functionalization reactions, including hybridized sp-, sp2-, and sp3-C-H bonds.
  • 加载中
    1. [1]

      Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283 (in Chinese).

    2. [2]

      Zhang, B.; Guan, H.; Liu, B.; Shi, B. Chin. J. Org. Chem. 2014, 34, 1487 (in Chinese).

    3. [3]

      Hull, K.; Sanford, M. J. Am. Chem. Soc. 2007, 129, 11904.

    4. [4]

      Desai, L.; Stowers, K.; Sanford, M. J. Am. Chem. Soc. 2008, 130, 13285.

    5. [5]

      Joo, J.; Guo, P.; Sames, D. J. Org. Chem. 2013, 78, 738.

    6. [6]

      Tan, J.; Chen, Y.; Li, H.; Yasuda, N. J. Org. Chem. 2014, 79, 8871.

    7. [7]

      Batchu, H.; Bhattacharyya, S.; Kant, R.; Batra, S. J. Org. Chem. 2015, 80, 7360.

    8. [8]

      Brahim, M.; Smari, I.; Ammar, H.; Hassine, B.; Soulé, J.; Doucet, H. Org. Chem. Front. 2015, 2, 917.

    9. [9]

      Testa, C.; Roger, J.; Scheib, S.; Fleurat-Lessard, P.; Hierso, J. Adv. Synth. Catal. 2015, 357, 2913.

    10. [10]

      Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7094.

    11. [11]

      Kim, M.; Kwak, J.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 8935.

    12. [12]

      Gong, T.; Xiao, B.; Cheng, W.; Su, W.; Xu, J.; Liu, Z.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.

    13. [13]

      Reddy, V.; Qiu, R.; Iwasaki, T.; Kambe, N. Org. Lett. 2013, 15, 1290.

    14. [14]

      Wang, H.; Schrçder, N.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 5386.

    15. [15]

      Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780.

    16. [16]

      Zhang, P.; Hong, L.; Li, G.; Wang, R. Adv. Synth. Catal. 2015, 357, 345.

    17. [17]

      Asaumi, T.; Matsuo, T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 4433.

    18. [18]

      Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619.

    19. [19]

      Oi, S.; Sasamoto, H.; Funayama, R.; Inoue, Y. Chem. Lett. 2008, 37, 994.

    20. [20]

      Kumar, P.; Jeyachandran, R.; Ackermann, L. J. Org. Chem. 2013, 78, 4145.

    21. [21]

      Ackermann, L.; Vicente, R.; Potukuchi, H.; Pirovano, V. Org. Lett. 2010, 12, 5032.

    22. [22]

      Arockiam, P.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. Green Chem. 2011, 13, 3075.

    23. [23]

      Muralirajan, K.; Parthasarathy, K.; Cheng, C. Org. Lett. 2012, 14, 4262.

    24. [24]

      Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. J. Org. Chem. 2013, 78, 638.

    25. [25]

      Schinkel, M.; Marek, I.; Ackermann, L. Angew. Chem., Int. Ed. 2013, 52, 3977.

    26. [26]

      Gonell, S.; Peris, E. ACS Catal. 2014, 4, 2811.

    27. [27]

      Wei, C.; Li, C. J. Am. Chem. Soc. 2002, 124, 5638.

    28. [28]

      Wei, C.; Li, C. J. Am. Chem. Soc. 2003, 125, 9584.

    29. [29]

      Yao, X.; Li, C. Org. Lett. 2005, 7, 4395.

    30. [30]

      Yao, X.; Li, C. Org. Lett. 2006, 8, 1953.

    31. [31]

      Arockiam, P.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. Angew. Chem., Int. Ed. 2010, 49, 6629.

    32. [32]

      Ackermann, L.; Lygin, A. Org. Lett. 2012, 14, 764.

    33. [33]

      Ackermann, L.; Pospech, J.; Potukuchi, H. Org. Lett. 2012, 14, 2146.

    34. [34]

      Wu, Z. Luo, F.; Chen, S.; Li, Z.; Xiang, H.; Zhou, X. Chem. Commun. 2013, 49, 7653.

    35. [35]

      Wu, Z.; Chen, S.; Hu, C.; Li, Z.; Xiang, H.; Zhou, X. ChemCatChem 2013, 5, 2839.

    36. [36]

      Lu, M.; Lu, P.; Xu, Y.; Loh, T. Org. Lett. 2014, 16, 2614.

    37. [37]

      Luo, F.; Yang, J.; Li, Z.; Xiang, H.; Zhou, X. Eur. J. Org. Chem. 2015, 2463.

    38. [38]

      Sun, S.; Shang, M.; Wang, H.; Lin, H.; Dai, H.; Yu, J. J. Org. Chem. 2015, 80, 8843.

    39. [39]

      Gong, H.; Zeng, H.; Zhou, F.; Li, C. Angew. Chem., Int. Ed. 2015, 54, 5718.

    40. [40]

      Xiao, F.; Chen, S.; Huang, H. Deng, G. Eur. J. Org. Chem. 2015, 7919.

    41. [41]

      Ohnmacht, S.; Mamone, P.; Culshaw, A. Greaney, M. Chem. Commun. 2008, 1241.

    42. [42]

      Ohnmacht, S.; Culshaw, A.; Greaney, M. Org. Lett. 2010, 12, 224.

    43. [43]

      Ramirez, N.; Bosque, I.; Gonzalez-Gomez, J. Org. Lett. 2015, 17, 4550.

    44. [44]

      Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2016, 18, 4144.

    45. [45]

      Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538.

    46. [46]

      Arumugam, V.; Kaminsky, W.; Nallasamy, D. Green Chem. 2016, 18, 3295.

    47. [47]

      Hu, J.; Lan, T.; Sun, Y.; Chen, H.; Yao, J.; Rao, Y. Chem. Commun. 2015, 51, 14929.

    48. [48]

      Luo, F.; Long, Y.; Li, Z.; Zhou, X. Acta Chim. Sinica 2016, 74, 805 (in Chinese).

    49. [49]

      Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. J. Org. Chem. 2008, 73, 7365.

    50. [50]

      Yi, C.; Kwon, K.; Lee, D. Org. Lett. 2009, 11, 1567.

    51. [51]

      Pierce, C.; Hilinski, M. Org. Lett. 2014, 16, 6504.

  • 加载中
    1. [1]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    8. [8]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    9. [9]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    10. [10]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    20. [20]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

Metrics
  • PDF Downloads(24)
  • Abstract views(1842)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return