Citation: Chen Manman, Wang Lijing, Li Wei. Copper-Catalyzed Oxysulfenylation of Alkenoic Acids with Benzenethiols: A Strategy to Construct Sulfenylated Lactones[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1173-1180. doi: 10.6023/cjoc201702042 shu

Copper-Catalyzed Oxysulfenylation of Alkenoic Acids with Benzenethiols: A Strategy to Construct Sulfenylated Lactones

  • Corresponding author: Wang Lijing, wanglj0405@163.com Li Wei, liweihebeilab@163.com
  • Received Date: 27 February 2017
    Revised Date: 1 April 2017

    Fund Project: the Hebei Province Science, foundation for Youths B2017201041the Hebei Province Higher School Science, foundation for High-level Personnel GCC2014014by the Hebei Province Science, foundation for Key Program B2016201031

Figures(2)

  • An efficient copper-catalyzed oxysulfenylation of alkenoic acids with benzenethiols via radical pathway was developed. The reactions are easy to be conducted under mild conditions and form a broad range of sulfenylated lactones.
  • 加载中
    1. [1]

      (a) Page, P. C. B. Organosulfur Chemistry I. In Topics in Current Chemistry, Springer, Berlin, 1999, Vol. 204. (b) Page, P. C. B. Organosulfur Chemistry Ⅱ. In Topics in Current Chemistry, Springer, Berlin, 1999, Vol. 205. (c) Jeppesen, J. O.; Nielsen, M. B.; Becher, J. Chem. Rev. 2004, 104, 5115. (d) Secrist, J. A., Ⅲ; Tiwari, K. N.; Riordan, J. M.; Montgomery, J. A. J. Med. Chem. 1991, 34, 2361. (e) Bagli, J. F.; Mackay, W. D.; Ferdinandi, E. F. J. Med. Chem. 1976, 19, 876. (f) Bichler, P.; Love, J. In Topics of Organometallic Chemistry, Ed.: Vigalok, A., Springer, Heidelberg, 2010, Vol. 31, p. 39. (g) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239. (h) Zyk, N. V.; Beloglazkina, E. K.; Belova, M. A.; Dubinina, N. S. Russ. Chem. Rev. 2003, 72, 769.

    2. [2]

    3. [3]

      (a) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385. (b) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13.

    4. [4]

      (a) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205. (b) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397. (c) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587. (d) Fernandez-Rodroeguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180. (e) Itoh, T.; Mase, T. Org. Lett., 2007, 9, 3687. (f) Lee, J. Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413. (g) Dahl, T.; Tornoe, C. W.; Bang-Andersen, B.; Nielsen, P.; Jorgensen, M. Angew. Chem., Int. Ed. 2008, 47, 1726. (h) Eichman, C. C.; Stambuli, J. P. J. Org. Chem. 2009, 74, 4005.

    5. [5]

      (a) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803. (b) Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.; Mandal, S.; Mitra, R.; Saha, P.; Punniyamurthy, T. J. Org. Chem. 2009, 74, 1971. (c) Larsson, P.-F.; Correa, A.; Carril, M.; Norrby, P.-O.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5691. (d) Xu, H.-J.; Zhao, Y.-Q.; Feng, T.; Feng, Y.-S. J. Org. Chem. 2012, 77, 2878. (e) Kumar, S.; Engman, L. J. Org. Chem. 2006, 71, 5400. (f) Taniguchi, N. J. Org. Chem. 2007, 72, 1241. (g) Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. J. Org. Chem. 2010, 75, 6732. (h) Hao, W.; Zeng, J.; Cai, M. Chem. Commun. 2014, 50, 11686.

    6. [6]

      (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880. (b) Wu, J.-R.; Lin, C.-H.; Lee, C.-F. Chem. Commun. 2009, 4450. (c) Lin, Y.-Y.; Wang, Y.-J.; Lin, C.-H.; Cheng, J.-H.; Lee, C.-F. J. Org. Chem. 2012, 77, 6100. (d) Wang, H.; Wang, L.; Shang, J.; Li, X.; Wang, H.; Gui, J.; Lei, A. Chem. Commun. 2012, 48, 76.

    7. [7]

      (a) Arisawa, M.; Ichikawa, T.; Yamaguchi, M. Org. Lett. 2012, 14, 5318. (b) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. J. Am. Chem. Soc. 2008, 130, 12214. (c) Ajiki, K.; Hirano, M.; Tanaka, K. Org. Lett. 2005, 7, 4193.

    8. [8]

      (a) Patai, S. The Chemistry of Double-Bonded Functional Groups, Wiley, Chichester, 1997. (b) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2014, 53, 1881. (c) Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202. (d) Bunescu, A.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 3132. (e) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962. (f) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604. (g) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.

    9. [9]

      (a) Hudlicky, M. Oxidations in Organic Chemistry, ACS Monograph Series 186, American Chemical Society, Washington, DC, 1990, p. 174. (b) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed., Ed.: Ojima, I., Wiley-VCH, New York, Weinheim, 2000, p. 357.

    10. [10]

      (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069. (b) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462. (c) Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655.

    11. [11]

      Gao, Y.; Gao, Y.; Tang, X.; Peng, J.; Hu, M.; Wu, W.; Jiang, H. Org. Lett. 2016, 18, 1158.  doi: 10.1021/acs.orglett.6b00272

    12. [12]

      (a) Samii, Z. K. M. Abd El; Ashmawy, M. I. Al; Mellor, J. M. Tetrahedron Lett. 1987, 28, 1949. (b) Vas'kevich, A. I.; Tsizorik, N. M.; Rusanov, E. B.; Staninets, V. I.; Vovk M. V. Russ. J. Org. Chem. 2012, 48, 193.

    13. [13]

      Wang, L.-J.; Chen, M.; Qi, L.; Xu, Z.; Li, W. Chem. Commun. 2017, 53, 2056.  doi: 10.1039/C7CC00090A

    14. [14]

      (a) Huo, C.; Wang, Y.; Yuan, Y.; Chen, F.; Tang, J. Chem. Commun. 2016, 52, 7233. (b) Huang, Z.; Zhang, D.; Qi, X.; Yan, Z.; Wang, M.; Yan, H.; Lei, A. Org. Lett., 2016, 18, 2351.

    15. [15]

      Kang, Y.-B. Chen, X.-M. Yao, C.-Z. Ning, X.-S. Chem. Commun. 2016, 52, 6193.  doi: 10.1039/C6CC02246D

    16. [16]

      (a) Samii, Z. K. M. Abel El.; Ashmawy, M. I Al.; Mellor, J. M. Tetrahedron Lett. 1986, 27, 5293. (b) Tiecco, M.; Tingoli, M.; Testaferri, L.; Balducci, R. J. Org. Chem. 1992, 57, 4025.

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(1)
  • Abstract views(1298)
  • HTML views(282)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return