Citation: Dong Xu, Hou Yongzheng, Meng Fanwei, Liu Hongbo, Liu Hui. Recent Advances on Alkyl-Heck Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1088-1098. doi: 10.6023/cjoc201702040 shu

Recent Advances on Alkyl-Heck Reaction

  • Corresponding author: Liu Hui, huiliu1030@sdut.edu.cn
  • Received Date: 26 February 2017
    Revised Date: 23 March 2017

    Fund Project: the Special Funding for Postdoctoral Innovation Project of Shandong Province No. 201501002the China Postdoctoral Science Foundation No. 2016M590736

Figures(18)

  • Recently, palladium-catalyzed alkyl-Heck reaction causes more attentions due to the wide application in the construction of C(sp3)-C(sp2). This review gives an up-to-date overview of alkyl-Heck reaction involving palladium radical intermediates, which are sorted in two categories of intramolecular reactions and intermolecular reactions. For most of these transformations, the plausible mechanisms are demonstrated in details. Clarification of these issues is the key point for understanding the palladium radical involved alkyl-Heck reactions and developing new high performance methodologies.
  • 加载中
    1. [1]

    2. [2]

      (a) Zapf, A.; Beller, M. Top. Catal. 2002, 19, 101.
      (b) Beller, M.; Zapf, A. In Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E.-I., Wiley, New York, 2002, Vol. 1, pp. 1209~1222.
      (c) Nicolaou, K. C. In Classics in Total Synthesis, Eds.: Nicolaou, K. C.; Sorensen, E. J., VCH, Weinheim, Germany, 1996, Chapter 31, pp. 565~632.

    3. [3]

      (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
      (b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
      (c) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
      (d) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9047. (e) Negishi, E. Angew. Chem., Int. Ed. 2011, 50, 6738.
      (f) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.

    4. [4]

      (a) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.
      (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (c) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
      (d) Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496.

    5. [5]

      Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765.  doi: 10.1038/nchem.2031

    6. [6]

      (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
      (b) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.
      (c) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
      (d) Liu, Q.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 13871 and references therein.

    7. [7]

      Firmansjah, L.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 11340.  doi: 10.1021/ja075245r

    8. [8]

      Bloome, K. S.; Alexanian, E. J. J. Am. Chem. Soc. 2010, 132, 12823.  doi: 10.1021/ja1053913

    9. [9]

      Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 20146.  doi: 10.1021/ja2091883

    10. [10]

      Parasram, M.; Iaroshenko, V. O.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 17926.  doi: 10.1021/ja5104525

    11. [11]

      Dong, X.; Han, Y.; Yan, F.; Liu, Q.; Wang, P., Chen, K.; Li, Y.; Zhao, Z.; Dong, Y.; Liu, H. Org. Lett. 2016, 18, 3774.  doi: 10.1021/acs.orglett.6b01787

    12. [12]

      Surapanich, N.; Kuhakarn, C.; Pohmakotr, M.; Reutrakul, V. Eur. J. Org. Chem. 2012, 2012, 5943.  doi: 10.1002/ejoc.v2012.30

    13. [13]

      McMahon, C. M.; Alexanian, E. J. Angew. Chem., Int. Ed. 2014, 53, 5974.  doi: 10.1002/anie.201311323

    14. [14]

      Zou, Y.; Zhou, J. Chem. Commun. 2014, 50, 3725.  doi: 10.1039/c4cc00297k

    15. [15]

      Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270.  doi: 10.1002/anie.201409617

    16. [16]

      (a) Mori, M.; Oda, I.; Ban, Y. Tetrahedron Lett. 1982, 23, 5315.
      (b) Mori, M.; Kanda, N.; Oda, I.; Ban, Y. Tetrahedron 1985, 41, 5465.
      (c) Mori, M.; Kubo, Y.; Ban, Y. Tetrahedron Lett. 1985, 26, 1519.
      (d) Mori, M.; Kanda, N.; Ban, Y. J. Chem. Soc., Chem. Commun. 1986, 1375.
      (e) Mori, M.; Kubo, Y.; Ban, Y. Tetrahedron 1988, 44, 4321.
      (f) Mori, M.; Kanda, N.; Ban, Y.; Aoe, K. J. Chem. Soc., Chem. Commun. 1988, 12.

    17. [17]

      Curran, D. P.; Chang, C.-T. Tetrahedron Lett. 1990, 31, 933.  doi: 10.1016/S0040-4039(00)94396-X

    18. [18]

      (a) Tsuji, J.; Sato, K.; Nagashima, H. Tetrahedron 1985, 41, 393.
      (b) Nagashima, H.; Sato, K.; Tsuji, J. Tetrahedron 1985, 41, 5645.

    19. [19]

      Tsuji, J.; Sato, K.; Nagashima, H. Tetrahedron 1985, 41, 5003.  doi: 10.1016/S0040-4020(01)96745-6

    20. [20]

      Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Adv. Synth. Catal. 2002, 344, 261.  doi: 10.1002/1615-4169(200206)344:3/4<261::AID-ADSC261>3.0.CO;2-7

    21. [21]

      Chen, Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc., Perkin Trans. 1 1988, 563.

    22. [22]

      (a) Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1992, 57, 4676.
      (b) Qiu, Z.-M.; Burton, D. J. J. Org. Chem. 1995, 60, 5570.

    23. [23]

      (a) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.
      (b) Jia, X.; Petrone, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 9870.
      (c) Petrone, D. A.; Malik, H. A.; Clemenceau, A.; Lautens, M. Org. Lett. 2012, 14, 4806.
      (d) Petrone, D. A.; Lischka, M.; Lautens, M. Angew. Chem., Int. Ed. 2013, 52, 10635.
      (e) Petrone, D. A.; Yoon, H.; Weinstabl, H.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 7908.

    24. [24]

      Braun, M.-G.; Katcher, M. H.; Doyle, A. G. Chem. Sci. 2013, 4, 1216.  doi: 10.1039/c2sc22198e

    25. [25]

      (a) Chen, C.; Hu, J.; Su, J.; Tong, X. Tetrahedron Lett. 2014, 55, 3229.
      (b) Chen, C.; Hou, L.; Cheng, M.; Su, J.; Tong, X. Angew. Chem., Int. Ed. 2015, 54, 3092.

    26. [26]

      Liu, H.; Qiao, Z.; Jiang, X. Org. Biomol. Chem. 2012, 10, 7274.  doi: 10.1039/c2ob25990g

    27. [27]

      Monks, B. M.; Cook, S. P. Angew. Chem., Int. Ed. 2013, 52, 14214.  doi: 10.1002/anie.201308534

    28. [28]

      Liu, Q.; Chen, C.; Tong, X. Tetrahedron Lett. 2015, 56, 4483.  doi: 10.1016/j.tetlet.2015.05.094

    29. [29]

      Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295.

    30. [30]

      Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2002, 124, 3812.  doi: 10.1021/ja017315e

    31. [31]

      (a) Fusano, A.; Sumino, S.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 2114.
      (b) Fusano, A.; Sumino, S.; Nishitani, S.; Inouye, T.; Morimoto, K.; Fukuyama, T.; Ryu, I. Chem. Eur. J. 2012, 18, 9415.

    32. [32]

      Bloome, K. S.; Alexanian, E. J. J. Am. Chem. Soc. 2010, 132, 12823.  doi: 10.1021/ja1053913

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(43)
  • Abstract views(3276)
  • HTML views(1204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return