Citation: Liu Lu, Zhang Junliang. Development of Transition-Metal-Catalyzed C(sp2)-H Functionalization of Arenes with Diazo Compounds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1117-1126. doi: 10.6023/cjoc201702020 shu

Development of Transition-Metal-Catalyzed C(sp2)-H Functionalization of Arenes with Diazo Compounds

  • Corresponding author: Liu Lu, lliu@chem.ecnu.edu.cn Zhang Junliang, 
  • Received Date: 16 February 2017
    Revised Date: 10 March 2017

    Fund Project: the National Natural Science Foundation of China Nos. 21372084the National Natural Science Foundation of China 21425205the National Natural Science Foundation of China 21572065the National Basic Research Program of China No. 2015CB856600the National Basic Research Program of China 973 Programthe Shanghai Pujiang Program No. 14PJ1403100

Figures(18)

  • C-H bond functionalization has been one of the most important subject in chemistry. How to control the site selectivity of C-H bond is the key issue and remain challenge. Transition-metal-catalyzed organic tranformation of diazo compounds, such as X-H (X=O, N, S, etc.) insertion, cyclopropanation, cross-coupling reactions and C(sp3)-H functionalization, have been well established, whereas the C(sp2)-H functionalization using diazo compounds is less developed. This review will summarize the progress in transition-metal-catalyzed C(sp2)-H functionalization of arenes with diazo compounds. To realize the site selectivity, two strategies are utilized. One is directed C-H activation, which gives the ortho-selective C-H functionalization products. The other is undirected approach, which normally exhibits para-selectivity. In order to understand these reactions, the mechanisms for selected examples are also provided.
  • 加载中
    1. [1]

    2. [2]

      (a) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506.
      (b) Fructos, M. R.; Díaz-Requejo, M. M.; Pérez, P. J. Chem. Commun. 2016, 52, 7326.
      (c) Wei, F.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. Sci. Bull. 2015, 60, 1479.
      (d) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981.
      (e) Davies, H. M. L.; Lian, Y.-J. Acc. Chem. Res. 2012, 45, 923.
      (f) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
      (g) Maas, G. Chem. Soc. Rev. 2004, 33, 183.
      (h) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
      (i) Doyle, M. P.; McKervey, M. A. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
      (j) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
      (k) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.

    3. [3]

      (a) Davies, H. M. L.; Manning, J.-R. Nature 2008, 451, 417.
      (b) Díaz-Requejo, M. M.; Pérez, P. J. Chem. Rev. 2008, 108, 3379.
      (c) Liu, Z.; Wang, J. J. Org. Chem. 2013, 78, 10024.

    4. [4]

      Silberrad, O.; Roy, C. S. J. Chem. Soc. 1906, 179.

    5. [5]

      (a) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
      (b) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.

    6. [6]

      http://ibond.nankai.edu.cn.

    7. [7]

      (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
      (b) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
      (c) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
      (d) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
      (e) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
      (f) Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem., Int. Ed. 2015, 54, 66.
      (g) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
      (h) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.
      (i) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
      (j) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369.
      (k) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
      (l) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
      (m) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
      (n) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2011, 45, 788;

    8. [8]

      Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565.  doi: 10.1021/ja305771y

    9. [9]

      (a) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
      (b) Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 12204.
      (c) Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 1364.
      (d) Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623.
      (e) Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. J. Org. Chem. 2013, 78, 5444.
      (f) Cheng, Y.; Bolm, C. Angew. Chem., Int. Ed. 2015, 54, 12349.
      (g) Cui, S.; Zhang, Y.; Wang, D.; Wu, Q. Chem. Sci. 2013, 4, 3912.
      (h) Dateer, R. B.; Chang, S. Org. Lett. 2016, 18, 68.
      (i) Liang, Y.; Yu, K.; Li, B.; Xu, S.; Song, H.; Wang, B. Chem. Commun. 2014, 50, 6130.
      (j) Zhou, T.; Li, B.; Wang, B. Chem. Commun. 2016, 52, 14117.
      (k) Zhou, J.; Shi, J.; Liu, X.; Jia, J.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 5868.
      (l) Son, J.-Y.; Kim, S.; Jeon, W. H.; Lee, P. H. Org. Lett. 2015, 17, 2518.
      (m) Bai, P.; Huang, X.-F.; Xu, G.-D.; Huang, Z.-Z. Org. Lett. 2016, 18, 3058.
      (n) Song, C.; Yang, C.; Zhang, F.; Wang, J.; Zhu, J. Org. Lett. 2016, 18, 4510.

    10. [10]

      Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 7896.  doi: 10.1002/anie.201404895

    11. [11]

      (a) Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 292.
      (b) Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 2828.
      (c) Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443.

    12. [12]

      (a) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 4508.
      (b) Kim, J. H.; Greßies, S.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 5577.

    13. [13]

      Li, J.; Tang, M.; Zang, L.; Zhang, X.; Zhang, Z.; Ackermann, L. Org. Lett. 2016, 18, 2742.  doi: 10.1021/acs.orglett.6b01199

    14. [14]

      Yu, Z.; Li, Y.; Shi, J.; Ma, B.; Liu, L.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 14807.  doi: 10.1002/anie.201608937

    15. [15]

      Hartwig, J. F.; Larsen, M. A. ACS Cent. Sci. 2016, 2, 281.  doi: 10.1021/acscentsci.6b00032

    16. [16]

      Yates, P. J. Am. Chem. Soc. 1952, 74, 5376.  doi: 10.1021/ja01141a047

    17. [17]

      (a) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
      (b) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427.
      (c) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
      (d) Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10811.

    18. [18]

      Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014, 136, 6904.  doi: 10.1021/ja503163k

    19. [19]

      Fan, H.; Zhang, Z.; Li, X.; Zhao, J.; Gao, J.; Zhu, S. Tetrahedron 2013, 69, 1978.  doi: 10.1016/j.tet.2012.12.077

    20. [20]

      Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010, 6719.

    21. [21]

      Tayama, E.; Ishikawa, M.; Iwamoto, H.; Hasegawa, E. Tetrahedron Lett. 2012, 53, 5159.  doi: 10.1016/j.tetlet.2012.07.070

    22. [22]

      Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 9817.  doi: 10.1002/anie.201404946

    23. [23]

      Liu, Y.; Yu, Z.; Zhang, J. Z.; Liu, L, Xia, F.; Zhang, J. Chem. Sci. 2016, 7, 1988.  doi: 10.1039/C5SC04319K

    24. [24]

      Liu, Y.; Yu, Z.; Luo, Z.; Zhang, J. Z.; Liu, L, Xia, F. J. Phys. Chem. A 2016, 120, 1925.  doi: 10.1021/acs.jpca.6b00636

    25. [25]

      Yang, J.-M.; Cai, Y.; Zhu, S.-F.; Zhou, Q.-L. Org. Biomol. Chem. 2016, 14, 5516.  doi: 10.1039/C5OB02418H

    26. [26]

      Magar, K. B. S.; Edison, T. N. J. I.; Lee, Y. R. Org. Biomol. Chem. 2016, 14, 7313.  doi: 10.1039/C6OB01315E

    27. [27]

      Yu, Z.; Qiu, H.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 2257.  doi: 10.1039/C5CC08880A

    28. [28]

      Jia, S.; Lei, Y.; Song, L.; Reddy, A. G. K.; Xing, D.; Hu, W. Adv. Synth. Catal. 2017, 359, 58.  doi: 10.1002/adsc.v359.1

    29. [29]

      Ma, B.; Wu, Z.; Huang, B.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 9351.  doi: 10.1039/C6CC04034A

    30. [30]

      Jia, S.; Xing, D.; Zhang, D.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098.  doi: 10.1002/anie.201406492

    31. [31]

      Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700.  doi: 10.1021/jacs.5b05086

    32. [32]

      Cao, Z.; Zhao, Y.; Zhou, J. Chem. Commun. 2016, 52, 2537.  doi: 10.1039/C5CC10096H

    33. [33]

      Rosenfeld, M. J.; Shankar, B. K.; Shechter, H. J. Org. Chem. 1988, 53, 2699.  doi: 10.1021/jo00247a007

    34. [34]

      Mbuvi, H. M.; Woo, L. K. Organometallics 2008, 27, 637.  doi: 10.1021/om7007502

    35. [35]

      Best, D.; Burns, D. J.; Lam, H. W. Angew. Chem., Int. Ed. 2015, 54, 7410.  doi: 10.1002/anie.v54.25

    36. [36]

      Best, D.; Jean, M.; van de Weghe, P. J. Org. Chem. 2016, 81, 7760.  doi: 10.1021/acs.joc.6b01426

    37. [37]

      Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284.  doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Rivilla, I.; Gõmez-Emeterio, B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Perez, P. J. Organometallics 2011, 30, 2855.  doi: 10.1021/om200206m

    39. [39]

      Conde, A.; Sabenya, G.; Rodríguez, M.; Postils, V.; Luis, J. S.; Díaz-Requejo, M. M.; Costas, M.; Pérez, P. J. Angew. Chem., Int. Ed. 2016, 55, 6530.  doi: 10.1002/anie.201601750

    40. [40]

      Ma, B.; Chu, Z.; Huang, B.; Liu, Z.; Liu, L.; Zhang, J. Angew. Chem., Int. Ed. 2017, 56, 2749.  doi: 10.1002/anie.v56.10

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(18)
  • Abstract views(4264)
  • HTML views(1999)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return