Citation: Ma Xiaopan, Liu Fengping, Mo Dongliang. Recent Advances in Chan-Evans-Lam Coupling Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1069-1087. doi: 10.6023/cjoc201702001 shu

Recent Advances in Chan-Evans-Lam Coupling Reaction

  • Corresponding author: Mo Dongliang, moeastlight@mailbox.gxnu.edu.cn
  • Received Date: 2 February 2017
    Revised Date: 21 March 2017

    Fund Project: the National Natural Science Foundation of China 21602037Natural Science Foundation of Guangxi No. 2016GXNSFFA380005the National Natural Science Foundation of China Nos. 21562005

Figures(12)

  • Chan-Evans-Lam reaction has been served as a powerful cross-coupling reaction in organic synthesis since its discovery in the 1990s owing to the feature of mild reaction conditions, functional group tolerance and open-flask chemistry. Up to now, it has been not only extensively utilized in carbon-heteroatom or carbon-carbon bonds formation, but also successfully applied to synthesize natural products and alkaloids. The new strategies of Chan-Evans-Lam reaction in organic synthesis as well as applications in total synthesis in recent five years are discussesed.
  • 加载中
    1. [1]

      See reviews: (a) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
      (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
      (c) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.
      (d) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.

    2. [2]

    3. [3]

      (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
      (b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
      (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.

    4. [4]

      (a) Ley, S. V.; Thomas, A. W. Angew. Chen., Int. Ed. 2003, 42, 5400.
      (b) Thomas, A. W.; Ley, S. V. In Modern Arylation Methods, Ed.: Ackermann, L., Wiley-VCH, Weinherim, 2008, p. 121.

    5. [5]

      (a) Chan, D. M. T.; Lam, P. Y. S. In Boronic Acids, Ed.: Hall, D. G., Wiley-VCH, Weinheim, 2005, Chapter 5, p. 205.
      (b) Li, J. J. In Name Recations: A Collection of Detailed Reaction Mechanisms and Synthetic Applications, 4th ed., Springer, New York, 2009, 102.

    6. [6]

      (a) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 5044.
      (b) King, A. E.; Ryland, B. L.; Brunold, T. C.; Stahl, S. S. Organometallics 2012, 31, 7948.

    7. [7]

      Larsson, P. F.; Wallentin, C. J.; Norrby, P. O. ChemCatChem 2014, 6, 1277.

    8. [8]

      Kumar, K. A.; Kannaboina, P.; Jaladanki, C. K.; Bharatam, P. V.; Das, P. ChemistrySelect 2016, 3, 601.

    9. [9]

      Qiao, J. X.; Lam, P. Y. S. Synlett 2011, 829.

    10. [10]

      Rao, K. S.; Wu, T. S. Tetrahedron 2012, 68, 7735.  doi: 10.1016/j.tet.2012.06.015

    11. [11]

      Bruneau, A.; Brion, J. D.; Alami, M.; Messaoudi, S. Chem. Commun. 2013, 49, 8359.  doi: 10.1039/c3cc44780d

    12. [12]

      Zhu, X.; Zhang, Q.; Su, W. RSC Adv. 2014, 4, 22775.  doi: 10.1039/c4ra02952f

    13. [13]

      Gogoi, A.; Sarmah, G.; Dewan, A.; Bora, U. Tetrahedron Lett. 2014, 55, 31.  doi: 10.1016/j.tetlet.2013.10.084

    14. [14]

      Rasheed, S.; Rao, D. N.; Reddy, K. R.; Aravinda, S.; Vishwakarma, R. A.; Das, P. RSC Adv. 2014, 4, 4960.  doi: 10.1039/c3ra44903c

    15. [15]

      Yoo, W. J.; Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.  doi: 10.1002/anie.201500074

    16. [16]

      Rasheed, S.; Rao, D. N.; Das, P. J. Org. Chem. 2015, 80, 9321.  doi: 10.1021/acs.joc.5b01396

    17. [17]

      Chen, J.; Natte, K.; Man, N. Y. T.; Stewart, S. G.; Wu, X. F. Tetrahedron Lett. 2015, 56, 4843.  doi: 10.1016/j.tetlet.2015.06.092

    18. [18]

      Rizwan, K.; Karakaya, I.; Heitz, D.; Zubair, M.; Rasool, N.; Molander, G. A. Tetrahedron Lett. 2015, 56, 6839.  doi: 10.1016/j.tetlet.2015.10.080

    19. [19]

      Mallia, C. J.; Burton, P. M.; Smith, A. M. R.; Walter, G. C.; Baxendale, L. R. Beilstein J. Org. Chem. 2016, 12, 1598.  doi: 10.3762/bjoc.12.156

    20. [20]

      Roy, S.; Sarma, M. J.; Kashyap, B.; Phukan, P. Chem. Commun. 2016, 52, 1170.  doi: 10.1039/C5CC04619J

    21. [21]

      Reddy, A. S.; Reddy, K. R.; Rao, D. N.; Jaladanki, C. K.; Bharatam, P. V.; Lam. P. Y. S.; Das, P. Org. Biomol. Chem. 2017, 15, 801.  doi: 10.1039/C6OB02444K

    22. [22]

      Vantourout, J. C.; Law, R. P.; Isidro-Llobet, A.; Atkinson, S. J.; Watson, A. J. B. J. Org. Chem. 2016, 81, 3942.  doi: 10.1021/acs.joc.6b00466

    23. [23]

      Krasavin, M. Eur. J. Med. Chem. 2015, 97, 525.  doi: 10.1016/j.ejmech.2014.11.028

    24. [24]

      Sarnpitak, P.; Mujumdar, P.; Morisseau, C.; Hwang, C. H.; Hammock, B.; Iurchenko, V.; Zozulya, S.; Gavalas, A.; Geronikaki, A.; Ivanenkov, Y.; Krasavin, M. Eur. J. Med. Chem. 2014, 84, 160.  doi: 10.1016/j.ejmech.2014.07.023

    25. [25]

      Darin, D.; Krasavin, M. J. Org. Chem. 2016, 81, 12514.  doi: 10.1021/acs.joc.6b02404

    26. [26]

      Onaka, T.; Umemoto, H.; Miki, Y.; Nakamura, A.; Maegawa, T. J. Org. Chem. 2014, 79, 6703.  doi: 10.1021/jo500862t

    27. [27]

      Boykin, D. W.; Farehat, A. A. Synth. Commun. 2015, 45, 245.  doi: 10.1080/00397911.2014.961196

    28. [28]

      Mandal, P. S.; Kumar, A. V. Synlett 2016, 27, 1408.  doi: 10.1055/s-00000083

    29. [29]

      Garnier, T.; Sakly, R.; Danel, M.; Chassaing, S.; Pale, P. Synthesis 2017, 49, 1223.

    30. [30]

      Rao, D. N.; Rasheed, S.; Vishwakarma, R. A.; Das, P. Chem. Commun. 2014, 50, 12911.  doi: 10.1039/C4CC05628K

    31. [31]

      Beyer, A.; Castanheiro, T.; Busca, P.; Prestat, G. ChemCatChem 2015, 7, 2433.  doi: 10.1002/cctc.201500510

    32. [32]

      Rao, D. N.; Rasheed, S.; Kumar, K. A.; Reddy, A. S.; Das, P. Adv. Synth. Catal. 2016, 358, 2126.  doi: 10.1002/adsc.v358.13

    33. [33]

      Kumar, K. A.; Kannaboina, P.; Rao, D. N.; Das, P. Org. Biomol. Chem. 2016, 14, 8989.  doi: 10.1039/C6OB01307D

    34. [34]

      Nandi, G. C.; Kota, S. R.; Govender, T.; Kruger, H. G.; Arvidsson, P. I. Tetrahedron 2014, 70, 5428.  doi: 10.1016/j.tet.2014.06.122

    35. [35]

      Moon, S. Y.; Nam, J.; Rathwell, K.; Kim, W. S. Org. Lett. 2014, 16, 338.  doi: 10.1021/ol403717f

    36. [36]

      You, C.; Yao, F.; Yan, T.; Cai, M. RSC Adv. 2016, 6, 43605.  doi: 10.1039/C6RA04298H

    37. [37]

      Mo, D.-L.; Anderson, L. L. Angew. Chem., Int. Ed. 2013, 52, 6722.  doi: 10.1002/anie.v52.26

    38. [38]

      Mo, D.-L.; Wink, D. A.; Anderson, L. L. Org. Lett. 2012, 14, 5180.  doi: 10.1021/ol3022885

    39. [39]

      Kontokosta, D.; Mueller, D. S.; Mo, D.-L.; Pace, W. H.; Simpson, R. A.; Anderson, L. L. Beilstein J. Org. Chem. 2015, 11, 2097.  doi: 10.3762/bjoc.11.226

    40. [40]

      Ohata, J.; Minus, M. B.; Abernathy, M. E.; Ball, Z. T. J. Am. Chem. Soc. 2016, 138, 7472.  doi: 10.1021/jacs.6b03390

    41. [41]

      Rossi, S. A.; Shimkin, K. W.; Xu, Q.; Mori-Quiroz, L. M.; Watson, D. A. Org. Lett. 2013, 15, 2314.  doi: 10.1021/ol401004r

    42. [42]

      Racine, E.; Monnier, F.; Vors, J.-P.; Taillefer, M. Chem. Commun. 2013, 49, 7412.  doi: 10.1039/c3cc42575d

    43. [43]

      (a) Tabolin, A. A.; Ioffe, S. L. Chem. Rev. 2014, 114, 5426.
      (b) Shi, W.-M.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Org. Chem. Front. 2016, 3, 116.

    44. [44]

      Mondal, M.; Sarmah, G.; Gogoi, K.; Bora, U. Tetrahedron Lett. 2012, 53, 6219.  doi: 10.1016/j.tetlet.2012.09.003

    45. [45]

      Mulla, S. A. R.; Chavan, S. S.; Inamdar, S. M.; Pathan, M. Y.; Shaikh, T. M. Y. Tetrahedron Lett. 2014, 55, 5327.  doi: 10.1016/j.tetlet.2014.07.056

    46. [46]

      Medda, A.; Pal, G.; Singha, R.; Hossain, T.; Saha, A.; Das, A, R. Synth. Commun. 2013, 43, 169.  doi: 10.1080/00397911.2011.594544

    47. [47]

    48. [48]

      Wang, R.; Wang, L.; Zhang, K.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2015, 56, 4815.  doi: 10.1016/j.tetlet.2015.06.066

    49. [49]

      Khatib, M. E.; Molander, G. A. Org. Lett. 2014, 16, 4944.  doi: 10.1021/ol5024689

    50. [50]

      Marcum, J. S.; McGarry, K. A.; Ferber, C. J.; Clark, T. B. J. Org. Chem. 2016, 81, 7963.  doi: 10.1021/acs.joc.6b01254

    51. [51]

      Huang, F.; Quach, T. D.; Batey, R. A. Org. Lett. 2013, 15, 3150.  doi: 10.1021/ol4013712

    52. [52]

      Patil, A. S.; Mo, D.-L.; Wang, H. Y.; Mueller, D. S.; Anderson, L. L. Angew. Chem., Int. Ed. 2012, 51, 7799.  doi: 10.1002/anie.201202704

    53. [53]

      Wang, H. Y.; Anderson, L. L. Org. Lett. 2013, 15, 3362.  doi: 10.1021/ol401416r

    54. [54]

      Kontokosta, D.; Mueller, D. S.; Wang, H. Y.; Anderson, L. L. Org. Lett. 2013, 15, 4830.  doi: 10.1021/ol402237w

    55. [55]

      Xu, H. J.; Zhao, Y. Q.; Feng, T.; Feng, Y. S. J. Org. Chem. 2012, 77, 2878.  doi: 10.1021/jo300100x

    56. [56]

      Lin, Y.; Cai, M.; Fang, Z.; Zhao, H. Tetrahedron 2016, 72, 3335.  doi: 10.1016/j.tet.2016.04.063

    57. [57]

      Qian, Z.; Ge, N.; Jiang, X. Chem. Commun. 2015, 51, 10295.  doi: 10.1039/C5CC03038B

    58. [58]

      Xiao, X.; Feng, M.; Jiang, X. Angew. Chem., Int. Ed. 2016, 55, 14121.  doi: 10.1002/anie.v55.45

    59. [59]

      Koley, S.; Chowdhury, S.; Chanda, T.; Ramulu, B. J.; Anand, N.; Singh, M. S. Eur. J. Org. Chem. 2015, 409.

    60. [60]

      Xu, J.; Xiao, B.; Xie, C. Q.; Luo, D. F.; Liu, L.; Fu, Y. Angew. Chem., Int. Ed. 2012, 51, 12551.  doi: 10.1002/anie.201206681

    61. [61]

      Moon, P. J.; Halperin, H. M.; Lundgren, R. J. Angew. Chem., Int. Ed. 2016, 55, 1894.  doi: 10.1002/anie.201510558

    62. [62]

      Moon, P. J.; Yin, S. K.; Lundgren, R. J. J. Am. Chem. Soc. 2016, 138, 13826.  doi: 10.1021/jacs.6b08906

    63. [63]

      Li, H.; Tsu, C.; Blackburn, C.; Li, G.; Hales, P.; Dick, L.; Bogyo, M. J. Am. Chem. Soc. 2014, 136, 13562.  doi: 10.1021/ja507692y

    64. [64]

      Feng, Y.; Holte, D.; Zoller, J.; Umemiya, S.; Simke, L. R.; Baran. P. S. J. Am. Chem. Soc. 2015, 137, 10160.  doi: 10.1021/jacs.5b07154

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    9. [9]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(708)
  • Abstract views(40470)
  • HTML views(5976)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return