Citation: Shi Dongdong, Bao Hanyang, Xu Zheng, Liu Yunkui. Synthesis of 6-Aryl Phenanthridines via Iron-Catalyzed sp2-C-H Bond Amination/Aromatization Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1290-1294. doi: 10.6023/cjoc201701054 shu

Synthesis of 6-Aryl Phenanthridines via Iron-Catalyzed sp2-C-H Bond Amination/Aromatization Reaction

  • Corresponding author: Liu Yunkui, ykuiliu@zjut.edu.cn
  • Received Date: 30 January 2017
    Revised Date: 27 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China 21372201the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology, and the Xin Miao Talents Program of Zhejiang Province 2016R403057Project supported by the National Natural Science Foundation of China 21172197

Figures(1)

  • With FeCl2 as a catalyst and Selectfluor as an oxidant, an efficient and highly selective synthesis of 6-aryl phenanthridines in one-pot manner has been achieved via an intramolecular sp2-C-H bond amination/aromatization of N-(biphenyl-2-yl(aryl)methyl)benzenesulfonamide derivatives. The optimized reaction conditions were established through systematic investigations of solvents, temperature, catalysts, oxidants and their dosages in the reaction. The present reaction has advantages of simple operation, easy availability of starting materials, the use of inexpensive and low-toxic iron catalyst, and good compatibility of substrates.
  • 加载中
    1. [1]

      (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096. (b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 49, 6954.

    2. [2]

      (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (b) Hartwig Acc. Chem. Res. 2008, 41, 1534.

    3. [3]

    4. [4]

    5. [5]

      (a) Stuart, D. R.; Laperle, M. B.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. (b) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (c) Li, J. J.; Mei, T. S.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 6452.

    6. [6]

      (a) Wang, J.; Wang, M.; Chen, K.; Zha, S.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 1178. (b) Wang, H.; Li, L.; Yu, S.; Li, Y.; Li, X. Org. Lett. 2016, 18, 2914.

    7. [7]

      (a) Zhang, Z.; Jiang, H.; Huang, Y. Org. Lett. 2014, 16, 5976. (b) Louillat, M. L.; Patureau, F. W. Org. Lett. 2013, 15, 164.

    8. [8]

      Xu, S.; Chen, X.; Li, J.; Xu, W.; Zhang, Y. Chin. J. Org. Chem. 2016, 36, 1985 (in Chinese).
       

    9. [9]

      Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931.  doi: 10.1021/ol0711117

    10. [10]

      Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500.  doi: 10.1021/ja072219k

    11. [11]

      Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379.  doi: 10.1002/anie.201101943

    12. [12]

    13. [13]

      (a) Zhang, W.; Zhang, J.; Ren, S.; Liu, Y. J. Org. Chem. 2014, 79, 11508. (b) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. J. Org. Chem. 2013, 78, 5932. (c) Zhang, W.; Ren, S.; Zhang, J.; Liu, Y. J. Org. Chem. 2015, 800, 5973. (d) Wu, D.; Zhang, J.; Cui, J.; Zhang, W.; Liu, Y. Chem. Commun. 2014, 50, 10857.

    14. [14]

    15. [15]

      Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.

    16. [16]

      Mazzotti, A. R.; Campbell, M. G.; Tang, P.; Murphy, J. M.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 14012.  doi: 10.1021/ja405919z

    17. [17]

      Michaudel, Q.; Thevenet, D.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 2547.  doi: 10.1021/ja212020b

    18. [18]

      Su, X.; Yu, S. Chem. Commun. 2016, 52, 10898.

    19. [19]

      Chang, M. -Y.; Cheng, Y. -C. Org. Lett. 2016, 18, 1682.  doi: 10.1021/acs.orglett.6b00603

    20. [20]

      (a) Tang, E.; Mao, D.; Li, W.; Gao, Z.; Yao, P. Heterocycles 2012, 85, 667. (b) Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2008, 10, 2259.

    21. [21]

      Fernando, P. C.; Scanlan, E. S.; Scottb, J. S.; Walton, J. C. Chem. Commun. 2008, 35, 4189.

    22. [22]

      Leardini, R. Synthesis. 1985, 1, 107.

    23. [23]

      Peng, J.; Chen, T.; Chen, G.; Li, B. J. Org. Chem. 2011, 76, 9507.  doi: 10.1021/jo2017108

  • 加载中
    1. [1]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    2. [2]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    3. [3]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    8. [8]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    13. [13]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    14. [14]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(1)
  • Abstract views(981)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return