Citation: Zhang Jiaheng, Hao Xinqi, Wang Zhenglong, Ren Changjiu, Niu Junlong, Song Maoping. Cobalt-Catalyzed C-H Benzylation of 8-Aminoquinolines on C(5) Position[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1237-1245. doi: 10.6023/cjoc201701034 shu

Cobalt-Catalyzed C-H Benzylation of 8-Aminoquinolines on C(5) Position

  • Corresponding author: Niu Junlong, niujunlong@zzu.edu.cn Song Maoping, mpsong@zzu.edu.cn
  • Received Date: 16 January 2017
    Revised Date: 22 February 2017

    Fund Project: by the National Natural Science Foundation of China 21502173by the National Natural Science Foundation of China 21272217the Outstanding Young Talent Research Fund of Zhengzhou University 1521316002

Figures(2)

  • The first cobalt-catalyzed benzylation of aminoquinolines on C(5) position has been developed. The C(sp2)-H/ C(sp3)-H cross-coupling of quinolineamides and butylated hydroxytoluene (BHT) could yield the desired products via bidentate-chelation assistance. Under the optimal reaction condition of Co(OAc)2·4H2O (20 mol%), AgTFA (2.0 equiv.), 120 ℃ for 12 h, the reaction is compatible with a wide range of quinoline substrates. This protocol provides a facile access to the benzyl substituted quinolines.
  • 加载中
    1. [1]

      (a) Carroll, F. I.; Blackwell, J. T.; Philip A.; Twine, C. E. J. Med. Chem. 1976, 19, 1111. (b) Shiraki, H.; Kozar, M. P.; Melendez, V.; Hudson, T. H.; Ohrt, C.; J.; Magill, A.; Lin, A. J. J. Med. Chem. 2011, 54, 131. (c) Pal, P.; Rastogi, S. K.; Gibson, C. M.; Eric Aston, D.; Larry Branen, A.; Bitterwolf, T. E. ACS Appl. Mater. Interfaces 2011, 3, 279. (d) Araujo, M. J.; Bom, J.; Capela, R.; Casimiro, C.; Chambel, P.; Gomes, P.; Iley, J.; Lopes, F.; Morais, J.; Moreira, R.; de Oliveira, E.; do Rośario, V.; Vale, N. J. Med. Chem. 2005, 48, 888.

    2. [2]

      (a) LaMontagne, M. P.; Blumbergs, P.; Smith, D. C. J. Med. Chem. 1989, 32, 1728. (b) Gershon, H.; Clarke, D. D.; Gershon, M. Monatsh. Chem. 1994, 125, 723. (c) Gershon, H.; Clarke, D. D.; Gershon, M. Monatsh. Chem. 2002, 133, 1437. (d) O'Neill, P. M.; Storr, R. C.; Park, B. K. Tetrahedron 1998, 54, 4615. (e) Gershon, H.; Clarke, D. D.; Gershon, M. Pharm. Sci. 1989, 78, 975.

    3. [3]

      (a) Gutekunst, W. R.; Baran P. S. Chem. Soc. Rev. 2011, 40, 1976. (b) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. (d) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676. (e) Wang, D.; Yu, X.; Yao, W.; Hu, W.; Ge, C.; Shi, X. Chem. Eur. J. 2016, 22, 5543. (f) Wang, D.; Yu, X.; Xu. X.; Ge, B.; Wang, X.; Zhang, Y. Chem. Eur. J. 2016, 22, 8663. (g) Luo, F.; Long, Y.; Li, Z.; Zhou, X. Acta Chim. Sinica 2016, 74, 805.

    4. [4]

      (a) Xu, K.; Shen, C.; Sheng, W.; Shan, S.; Jia, Y. Chin. J. Org. Chem. 2015, 35, 633. (b) Yan, Z.; Jin, H.; Yu, X.; Wang, W.; Tian, W. Chin. J. Org. Chem. 2017, 37, 196. (c) Zhang, C.; Fan, C.; Pu, C.; Liu, G. Chin. J. Org. Chem. 2015, 33, 1310.

    5. [5]

      Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.  doi: 10.1021/ja4026424

    6. [6]

      Zhu, L.; Qiu, R.; Cao, X.; Xiao, S.; Xu, X.; Au, C.-T.; Yin, S.-F. Org. Lett. 2015, 17, 5528.  doi: 10.1021/acs.orglett.5b02511

    7. [7]

      (a) Liang, H.-W.; Jiang, K.; Ding, W.; Yuan, Y.; Shuai, L.; Chen, Y.-C.; Wei, Y. Chem. Commun. 2015, 51, 16928. (b) Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Dong, Y.; Wu, Y.; Kong, X.; Jiang, L.; Wu, Y. Org. Lett. 2015, 17, 6086. (c) Xu, J.; Shen, C.; Zhu, X.; Zhang, P.; Ajitha, M. J.; Huang, K.-W.; An, Z.; Liu, X. Chem. Asian J. 2016, 11, 882. (d) Wei, J.; Jiang, J.; Xiao, X.; Lin, D.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. J. Org. Chem. 2016, 81, 946. (e) Li, J.-M.; Weng, J.; Lu, G.; Chan, A. S. C. Tetrahedron Lett. 2016, 57, 2121. (f) Xia, C.; Wang, K.; Xu, J.; Wei, Z.; Shen, C.; Duan, G.; Zhu, Q.; Zhang, P. RSC Adv. 2016, 6, 37173.

    8. [8]

      Sahoo, H.; Reddy, M. K.; Ramakrishna, I.; Baidya, M. Chem. Eur. J. 2016, 22, 1592.  doi: 10.1002/chem.201504207

    9. [9]

      Xu, J.; Zhu, X.; Zhou, G.; Ying, B.; Ye, P.; Su, L.; Shen, C.; Zhang, P. Org. Biomol. Chem. 2016, 14, 3016.  doi: 10.1039/C6OB00169F

    10. [10]

      Wu, C.; Zhou, H.; Wu, Q.; He, M.; Li, P.; Su, Q.; Mu, Y. Synlett 2016, 868.

    11. [11]

      Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H. RSC Adv. 2015, 5, 28892.  doi: 10.1039/C4RA16896H

    12. [12]

      Cong, X.; Zeng, X. Org. Lett. 2014, 16, 3716.  doi: 10.1021/ol501534z

    13. [13]

      Whiteoak, C. J.; Planas, O.; Company, A.; Ribas, X. Adv. Synth. Catal. 2016, 358, 1679.  doi: 10.1002/adsc.v358.10

    14. [14]

      (a) Wang, Y.; Cheng, G. L.; Cui, X. Chin. J. Org. Chem. 2012, 32, 2018. (b) Gang, F.; Xu, G.; Dong, T.; Yang, L.; Du, Z. Chin. J. Org. Chem. 2015, 35, 1428. (c) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (d) Yu, S.-C.; Ma, S.-M. Chin. J. Org. Chem. 2002, 22, 307. (e) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (f) Patureau, F. W.; Joanna, W.; Glorius, F. Aldrichim. Acta 2012, 45, 31.

    15. [15]

      (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 891. (b) Hartwig, J. F. Chem. Soc. Rev., 2011, 40, 1992. (c) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.

    16. [16]

      (a) Pellissier, H.; Clavier, H. A. Chem. Rev. 2014, 114, 2775. (b) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435. (c) Ackermann, L. J. Org. Chem. 2014, 79, 8948. (d) Wang, H.; Xin, Z.; Xiang, R.; Liu, S.; Gao, X.; Li, C. Chin. J. Org. Chem. 2016, 34, 757. (e) Zhou, P.; Jin, J.; Zhang, B.; Yang, C.; Zhang, Z.; Li, Z.; Deng, K. Chin. J. Org. Chem. 2016, 34, 1013. (f) Zhao, H.; Sun, J.; Wang, L.; Li, X. Acta Chim. Sinica 2015, 73, 1307.

    17. [17]

      Du, C.; Li, P.-X.; Zhu, X.; Suo, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2016, 55, 13571.  doi: 10.1002/anie.v55.43

    18. [18]

      (a) Egami, H.; Ide, T.; Kawato, Y.; Hamashima, Y. Chem. Commun. 2015, 51, 16675. (b) Gao, Y.; Lu, G.; Zhang, P.; Zhang, L.; Tang, G.; Zhao, Y. Org. Lett. 2016, 18, 1242. (c) Tong, K.; Liu, X.; Zhang, Y.; Yu, S. Chem. Eur. J. 2016, 22, 15669.

  • 加载中
    1. [1]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    11. [11]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    13. [13]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    14. [14]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    17. [17]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(2)
  • Abstract views(1775)
  • HTML views(584)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return